Interpretasi Kombinatorial Kongruensi Fungsi Partisi Biner Modulo 2

Agung Prastya - Universitas Gadjah Mada
Uha Isnaini - Universitas Gadjah Mada

Abstract


A partition of a positive integer n is a non-increasing sequence of finite positive integers such that the sum is equal to n. One thing that is studied by some researchers in integer partition is binary partition. A binary partition of a positive integer n is a non-increasing sequence of finite positive integers that are powers of 2 and sum to n. The number of binary partitions of n is denoted by b(n) and is called the binary partition function. In this study, we provides a combinatorial interpretation of a congruence of binary partition functions modulo 2. The interpretation involves dividing all binary partitions of n into two sets with the same cardinality using a bijective function that maps binary partitions satisfying certain conditions to binary partitions satisfying other conditions.

Full Text:

PDF

References


Andrews, G. E. (1984). The Theory of Partitions. Cambridge University Press.

Churchhouse, R.F. (1969). Congruences properties of the binary partition function. Math. Proc. Cambridge Philos. Soc., 2, 66, 371-376.

Hirschhorn, M. D. & Loxton, J. H. (1975). Congruence properties of the binary partition function, Math. Proc. Cambridge Philos. Soc., 78, 437-442.

Kachi, Y. & Tzermias, P. (2018). On the m-ary partition numbers, Algebra and Discrete Mathematics, 1, 19, 67-76.

Anders, K., Dennison, M., Lansing, J. W., & Reznick, B. (2013). Congruence properties of binary partition functions. Annals of Combinatorics, 17(1), 15-26.

Sobolewski, B., & Ulas, M. (2022). Values of binary partition function represented by a sum of three squares. arXiv preprint arXiv:2211.16622.

Ulas, M., & Żmija, B. (2019). On arithmetic properties of binary partition polynomials. Advances in Applied Mathematics, 110, 153-179.

Andrews, G. E., Fraenkel, A. S., & Sellers, J. A. (2015). Characterizing the Number of m-ary Partitions Modulo m. The American Mathematical Monthly, 122(9), 880-885.

Rucci, L. E. (2016). The K th M-ary Partition Function. Indiana University of Pennsylvania.

Folsom, A., Homma, Y., Ryu, J. H., & Tong, B. (2016). On a general class of non-squashing partitions. Discrete Mathematics, 339(5), 1482-1506.

Dilcher, K., & Ericksen, L. (2019). Polynomial Analogues of Restricted b-ary Partition Functions. J. Integer Seq., 22(3), 19-3.

Dilcher, K., & Ericksen, L. (2021). Polynomial analogues of restricted multicolor b-ary partition functions. International Journal of Number Theory, 17(02), 371-391.

Sun, L. H., & Zhang, M. (2018). On the enumeration and congruences for m-ary partitions. Journal of Number Theory, 185, 423-433.

Blair, D. (2018). Recurrence Identities of b-ary Partitions. In Combinatorial and Additive Number Theory II: CANT, New York, NY, USA, 2015 and 2016 (pp. 53-83). Cham: Springer International Publishing.

Latapy, M. (2021). Partitions of an Integer into Powers. arXiv preprint arXiv:2101.08312.




DOI: http://dx.doi.org/10.24036/unpjomath.v8i1.14255