### Interpretasi Kombinatorial Kongruensi Fungsi Partisi Biner Modulo 2

#### Abstract

A partition of a positive integer n is a non-increasing sequence of finite positive integers such that the sum is equal to n. One thing that is studied by some researchers in integer partition is binary partition. A binary partition of a positive integer n is a non-increasing sequence of finite positive integers that are powers of 2 and sum to n. The number of binary partitions of n is denoted by b(n) and is called the binary partition function. In this study, we provides a combinatorial interpretation of a congruence of binary partition functions modulo 2. The interpretation involves dividing all binary partitions of n into two sets with the same cardinality using a bijective function that maps binary partitions satisfying certain conditions to binary partitions satisfying other conditions.

PDF

#### References

Andrews, G. E. (1984). The Theory of Partitions. Cambridge University Press.

Churchhouse, R.F. (1969). Congruences properties of the binary partition function. Math. Proc. Cambridge Philos. Soc., 2, 66, 371-376.

Hirschhorn, M. D. & Loxton, J. H. (1975). Congruence properties of the binary partition function, Math. Proc. Cambridge Philos. Soc., 78, 437-442.

Kachi, Y. & Tzermias, P. (2018). On the m-ary partition numbers, Algebra and Discrete Mathematics, 1, 19, 67-76.

Anders, K., Dennison, M., Lansing, J. W., & Reznick, B. (2013). Congruence properties of binary partition functions. Annals of Combinatorics, 17(1), 15-26.

Sobolewski, B., & Ulas, M. (2022). Values of binary partition function represented by a sum of three squares. arXiv preprint arXiv:2211.16622.

Ulas, M., & Żmija, B. (2019). On arithmetic properties of binary partition polynomials. Advances in Applied Mathematics, 110, 153-179.

Andrews, G. E., Fraenkel, A. S., & Sellers, J. A. (2015). Characterizing the Number of m-ary Partitions Modulo m. The American Mathematical Monthly, 122(9), 880-885.

Rucci, L. E. (2016). The K th M-ary Partition Function. Indiana University of Pennsylvania.

Folsom, A., Homma, Y., Ryu, J. H., & Tong, B. (2016). On a general class of non-squashing partitions. Discrete Mathematics, 339(5), 1482-1506.

Dilcher, K., & Ericksen, L. (2019). Polynomial Analogues of Restricted b-ary Partition Functions. J. Integer Seq., 22(3), 19-3.

Dilcher, K., & Ericksen, L. (2021). Polynomial analogues of restricted multicolor b-ary partition functions. International Journal of Number Theory, 17(02), 371-391.

Sun, L. H., & Zhang, M. (2018). On the enumeration and congruences for m-ary partitions. Journal of Number Theory, 185, 423-433.

Blair, D. (2018). Recurrence Identities of b-ary Partitions. In Combinatorial and Additive Number Theory II: CANT, New York, NY, USA, 2015 and 2016 (pp. 53-83). Cham: Springer International Publishing.

Latapy, M. (2021). Partitions of an Integer into Powers. arXiv preprint arXiv:2101.08312.

DOI: http://dx.doi.org/10.24036/unpjomath.v8i1.14255