Metode Iterasi Prediktor Korektor Jarratt Householder Untuk Penentuan Akar Persamaan Non Linier
Abstract
Full Text:
PDFReferences
Munir. R. (2006). Metode Numerik Edisi Revisi. Bandung : Informatika ITB
Jnawali, J. (2021). New Modified Newton Type Iterative Method. Nepal Journal Mathematical Sciences, 2(1), 17-24.
Ebelechukwu, O. C., Johnson, B. O., Michael, A. I., & Fidelis, A. T. (2018). Comparison of Some Iterative Methods of Solving Nonlinear Equations. International Journal of Theoretical and Applied Mathematics, 4(2), 22.
Singh, M.K, & Sing, S.R. (2011). A Six Order of Newton’s Method For Solving Nonlinear Equations. International Journal Of Computational Cognition. Vol. 9, No. 2.
Chun, C. (2007). Some Improvements of Jarratt’s Method With Sixth Order Convergence . Applied Mathematics and Computation, 190(2), 1432-1437.
Nazeer, W., Tanveer, M., Kang, S. M., & Naseem, A. (2016). A New Householder’s Method Free From Second Derivatives For Solving Nonlinear Equations And Polynomiography. J. Nonlinear Sci. Appl, 9(3), 998-1007.
Chun, C. & Lee, M.Y. (2013). A New Optimal Eighth-Order Family of Iterative Methods For The Solution of Nonlinear Equations. Journal Applied Mathematics and Computation, 223, 506-519.
Abdul-Hassan, N. Y. (2016). New Predictor-Corrector Iterative Methods With Twelfth Order Convergence For Solving Nonlinear Equations. American Journal Applied of Mathematics. Vol 4. No.4.
Ayyub, B.M & Mccuen, R.H. (2016). Numerical Analysis for Engineers : Methods and Applications, Second Edition. USA : CRC Press.
Liu, X. & Wang, X. (2013). A Family of Methods for Solving Nonlinear Equations with Twelfth-Order Convergence. Applied Mathematics, 4(2), 326-329.
DOI: http://dx.doi.org/10.24036/unpjomath.v8i1.13421