Perancangan Alat Pendeteksi Iris Mata Menggunakan Metode Wavelet Filter

Atsila Shalsabila(1), Riki Mukhaiyar(2),
(1) Universitas Negeri Padang  Indonesia
(2) Universitas Negeri Padang  Indonesia

Corresponding Author


DOI : https://doi.org/10.24036/jtev.v8i2.118360

Full Text:    Language : en

Abstract


The development of biometric technolgy is growing so that many recognition systems use biometrics in the form of physical characteristics and behavioral characteristics. Physical characteristics such as fingerprints, retina of the eye, face, and iris. While the behavioral characteristics include signatures, gait, and voice. One of the biometric parts used as an identifier is iris recognition using mathematical techniques. The iris of the eye has a unique and distinct pattern for each individual with stable identification and tends to remain unchanged. This study aims to design a tool that is able to detect a person's iris with a feature extraction method, namely Gabor wavelet with a classification method, namely K-Nearest Neighbor (K-NN). The results of the experiments carried out, the system succeeded in recognizing the iris image according to the selected image. However, if the selected image is not in the database, the results will show the name of the image that has the closest predictive value.

Keywords


biometric; iris; identification; Gabor wavelet method; K-Nearest Neighbor

References


D. Frenza and R. Mukhaiyar, “Aplikasi Pengenalan Wajah Menggunakan Metode Adaptive Resonance Theory ( ART ),” Multidicsiplinary Res. Dev., vol. 3, no. 3, pp. 35–42, 2021, [Online]. Available: https://doi.org/10.31933/rrj.v3i3.392

R. Mukhaiyar and R. Safitri, “Implementation of artificial neural network: Back propagation method on face recognition system,” 2019 16th Int. Conf. Qual. Res. QIR 2019 - Int. Symp. Electr. Comput. Eng., pp. 1–5, 2019, doi: 10.1109/QIR.2019.8898276.

S. N. Afrizal and E. A. Sarwoko, “Pengenalan Pola Iris mata Menggunakan Metode Template Matching dengan Library Open CV,” Matematika, vol. 19, pp. 60–64, 2016.

A. A. Andarinny, C. E. Widodo, and K. Adi, “Perancangan sistem identifikasi biometrik jari tangan menggunakan Laplacian of Gaussian dan ektraksi kontur,” Youngster Phys. J., vol. 6, no. 4, pp. 304–314, 2017.

R. Mukhaiyar, “Analysis of Galton-Henry classification method for fingerprint database FVC 2002 and 2004,” Int. J. GEOMATE, vol. 13, no. 40, pp. 118–123, 2017, doi: 10.21660/2017.40.92748.

D. Agusti and A. A. Nababan, “Penerapan Metode Harmonic Mean Filter Dalam Mereduksi Gaussian Noise Pada Citra Digital,” Komputasi dan Teknol. Inf., vol. 5, no. 3, pp. 565–571, 2022.

E. G. Kristanto, E. Rompas, and S. Wangko, “Identifikasi Iris Opsi Identifikasi Biometrik,” J. Biomedik, vol. 5, no. 3, 2014, doi: 10.35790/jbm.5.3.2013.4343.

F. E. Alfian, I. G. P. S. Wijaya, and F. Bimantoro, “Identifikasi Iris Mata Menggunakan Metode Wavelet Daubechies dan K-Nearest Neighbor,” J. Teknol. Informasi, Komputer, dan Apl. (JTIKA ), vol. 2, no. 1, pp. 1–10, 2020, doi: 10.29303/jtika.v2i1.76.

A. D. Hartanto, R. R. Isnanto, and A. Hidayatno, “Pengenalan Citra Iris Mata Menggunakan Alihragam Wavelet Daubechies Orde 4,” pp. 1–7, 2012.

B. Tunjung, R. R. Isnanto, and A. Hidayatno, “Sistem Pengenalan Iris Mata Menggunakan Metode Phase Only Correlation,” Transient, vol. 2, no. 1, pp. 183–186, 2013.

T. dwi Prihartono, R. R. Isnanto, and I. Santoso, “Identifikasi Iris Mata Menggunakan Alihragam Wavelet Haar,” Transmisi, vol. 13, no. 2, pp. 71-75–75, 2011.

F. J. Pontoh, F. Xaverius Senduk, and I. E. G. Pondaag, “Aplikasi Pengenalan Iris Mata Menggunakan Metode Hough Transform Dan Gabor Wavelet,” J. Ilm. Inform., vol. 9, no. 02, pp. 105–109, 2021, doi: 10.33884/jif.v9i02.4205.

S. Serte and H. Demirel, “Gabor wavelet-based deep learning for skin lesion classification,” Comput. Biol. Med., vol. 113, 2019, doi: 10.1016/j.compbiomed.2019.103423.

D. Yunita, “Perbandingan Algoritma K-Nearest Neighbor dan Decision Tree untuk Penentuan Risiko Kredit Kepemilikan Mobil,” J. Inform. Univ. Pamulang, vol. 2, no. 2, p. 103, 2017, doi: 10.32493/informatika.v2i2.1512.

K. K. Purnamasari and N. I. Widiastuti, “Perbandingan Algoritma K-Means Dan K-Nearest Neighbors Pada Sistem Peringkasan Otomatis,” Komputa J. Ilm. Komput. dan Inform., vol. 6, no. 2, pp. 57–66, 2017, doi: 10.34010/komputa.v6i2.2478.


Article Metrics

 Abstract Views : 378 times
 PDF Downloaded : 108 times

Refbacks

  • There are currently no refbacks.