Prediksi Jumlah Zakat Melalui Angka Kemiskinan di Kota Padang dengan Menggunakan Metode Graybill

Dwi Wigati - Matematika, Universitas Negeri Padang
Helma Helma - Matematika, Universitas Negeri Padang

Abstract


AbstractIf want the poverty rate in the Padang City to drop by a certain amount, then the amount of zakat must be estimated. The research was conducted to obtain predictions of reducing poverty through the amount of zakat with inverse regression using the Graybill method. The data of this research is secondary data. Data obtained through the Padang City BAZNAS about the amount of zakat collected and through the BPS website Padang City about the percentage of poor people of Padang City in 2005-2017. The results of research obtained a prediction model of the amount of zakat that must be provided ( ) in Padang for poverty rates .

KeywordsPoverty, Zakat, Inverse Regression, Graybill Method.


Full Text:

PDF

References


Firmansyah. 2013. Zakat sebagai Instrumen Pengentasan Kemiskinan dan Kesenjangan Pendapatan. Jurnal Ekonomi dan Pembangunan Vol 21, No. 2.

Badan Pusat Statistika. 2017. Data dan Informasi Kemiskinan Kabupaten/Kota tahun 2017.

Sari, Elsa Kartika. 2006. Pengantar Hukum Zakat Dan Wakaf, Jakarta: PT.Grasindo.

Hasan, M.Ali, 2008. Zakat dan Infak: Salah Satu Solusi Mengatasi Problem Sosial di Indonesia, Jakarta: Kencana.

Putri, Lani Widia. 2017. “Model Matematika Zakat dalam Pengurangan Kemiskinan”, Skripsi, 66 Hal., Universitas Negeri Padang, Padang, Indonesia, Februari 2017.

Wigati, Dwi Wahyu. 2020. “Prediksi Penurunan Angka Kemiskinan Melalui Jumlah Zakat di Kota Padang dengan Menggunakan Metode Graybill”, Skripsi, 72 Hal., Universitas Negeri Padang, Padang, Indonesia, November 2019.

Helma. 2019. Predict the ability of students to conduct preliminary analysis using reverse and inverse regression. Journal of Physics: Conference Series. 1317. 012116. 10.1088/1742-6596/1317/1/012116.

Montgomery, Douglas C. Elizabeth A. Peck Metode & G.Geofery. 2006. Introduction To Linear Regresion Analysis. Willey-Interscience, Canada.

Thonnard, M. 2006. Confidence Intervals in Inverse Regression. Technisme Universiteit Eindhoven, Department of Mathematics and Computer Science.

Sembiring, R.K. 1995. Analisis Regresi. Bandung: ITB.




DOI: http://dx.doi.org/10.24036/unpjomath.v5i1.8899