Peramalan Jumlah Pengunjung Objek Wisata Waterboom Kota Sawahlunto Tahun 2019 Menggunakan Metode SARIMA

ulfah hanum - Jurusan Matematika Universitas Negeri Padang
dewi murni - Jurusan Matematika Universitas Negeri Padang

Abstract


AbstractThe visitors of tourist attraction will change and tend to be inconsistent over the tim, one of them is Waterboom which is located in Sawahlunto. This tourist object lacks of public facilities when it shows the increasing number of the visitors. Therefore, it is needed to make a prediction as the base in decision making. This research to make a model ARIMA and to get the prediction’s result of the total number of the Waterboom’s visitors in 2019. The data used are the number of the Waterboom’s visitors from January, 2014 up to December, 2018. Data analysis using the Seasonal Autoregressive Integrated Moving Average (SARIMA). This method consists of identification model, falsification stage and parameter testing, diagnostic stage, and forecasting stage. The analysis’s result in this study gets the best model for predicting data  of the total number of the visitors of Waterboom in Sawahlunto that is ARIMA(1,1,1)(0,1,0)12, and this model is used to make a prediction in the next 12 periods.

KeywordsThe Number of visitors, SARIMA’s Model, Forecasting


Full Text:

PDF PDF

References


Dholym, Shadam Fat. 2018. Analisis Faktor-faktor yang Mempengaruhi Jumlah Pengunjung Objek Wisata Umbul Ponggok, Desa Ponggok, Polanharjo, Klaten. Skripsi. Universitas Islam Indonesia, Yogyakarta.

Faizal, Muhammad Anang. 2015. Analisis Faktor-faktor yang Mempengaruhi Kunjungan Wisatawan ke Pantai Kartini. Skripsi. Universitas Diponegoro. Semarang.

Suprayoga, Gede Budi. “Identitas Kota Sawahlunto Paska Kejayaan Pertambangan Batu Bara.” Jurnal Perencanaan Wilayah dan Kota (Vol. 19 No. 2). Hlm 6.

Sari, Dola Permata., Marwan., & Rahmidani, Rose. 2018. “Pengaruh Bauran Pemasaran Jasa Terhadap Keputusan Keputusan Berkunjung Wisatawan Pada Jurnal Pendidikan Ekonomi (Vol. 1 No. 1). Hlm 124.

Montgomery,C. D., Jennings, L. C., Kulachi. M. 2008. Introduction to Time Series Forecasting and Analysis. Canada: John Wiley and Sons, Inc.

Arsyad, Licoln. 1999. Peramalan Bisnis Edisi Pertama. Yogyakarta: BPFE UGM.

Azwi dan Sukarna. 2006. Analisis Deret Waktu. Makasar: Penerbit Andira.

Makridakis, Spyros, dkk. 1999. Metode dan Aplikasi Peramalan Edisi Kedua. Erlangga: Jakarta.




DOI: http://dx.doi.org/10.24036/unpjomath.v4i3.7193