Peramalan Hasil Produksi Padi di Kota Pariaman Menggunakan Metode Autoregressive Moving Average (ARMA)

Yasyfin Khairani - Universitas Negeri Padang
Helma Helma -
Rara Winanda -

Abstract


Rice is the main commodity that supports national food security and fulfills the consumption needs of most of the Indonesian population. Rice production faces many persistent problems, such as yield fluctuations, pest and disease attacks, and environmental changes. One example is the conversion of agricultural areas into residential and industrial areas, which causes rice production to decline. The purpose of this research is to use the Autoregressive Moving Average (ARMA) approach to develop a forecasting model of Pariaman City’s rice production and forecast the results for 2024 in a monthly period. This applied research uses secondary data obtained from the official website of the Pariaman City Statistics Agency. The best forecasting model results are achieved with the ARMA (1,2) model which produces the smallest MSE value of 96.6965. The model form is $$Y_t = 1.00048Y_{t-1} + \varepsilon_t + 0.443\varepsilon_{t-1} + 0.493\varepsilon_{t-2}$$.

Full Text:

Untitled PDF PDF

References


Badan Pusat Statistik. 2024. Luas Panen dan Produksi Padi di Sumatera Barat 2024. Sumatera Barat: Badan Pusat Statistik Sumatera Barat.

Dalimunthe, D. Y., Sulistiana, I., Saputra, D., Aldila, H., & Pririzki, S. J. (2023). Projection Of The Inflation Rate In Pangkalpinang City Using The Autoregressive Moving Average (ARMA). BAREKENG: Jurnal Ilmu Matematika dan Terapan, 17(3), 1513-1520.

Dinas Perkebunan, Tanaman Pangan dan Holtikultura. 2022. Luas Lahan, Luas Panen, dan Luas Tanam Provinsi Sumatera Barat. Dinas Pertanian Provinsi Sumatera Barat.

Surmaini, E., & Faqih, A. (2016). Kejadian iklim ekstrem dan dampaknya terhadap pertanian tanaman pangan di Indonesia. Jurnal Sumberdaya Lahan, 10(2).

Hayuningtyas, R. Y. (2020). Implementasi Metode Tripel Exponential Smoothing Untuk Prediksi Penjualan Alat Kesehatan. Jurnal Sains Dan Manajemen, 8(1), 29–35.

Nurfadilah, K., Sauddin, A., & Saputri, W. (2022). Application Of Exponential Smoothing Method To Forecase The Amount Of Rice Production In Tanate Riaja District, Barru Regency. Eigen Mathematics Journal, 21-26.

Afifah, B. N., Helma, H., Permana, D., Metode Pemulusan Eksponensial Tripel Tipe Brown pada Peramalan Pajak Restoran dan Hotel Kota Padang, UNP Journal of Mathematics, 1(1) (2018).

Haris, H. 2010. Metodologi Penelitian Kuantiatif. Jakarta: Salemba Humanika.

Melinda, G., Nasution, M. L., & Helma, H. (2019). Peramalan Jumlah Konsumsi Energi Listrik di PT PLN (Persero) Rayon Bukittinggi Menggunakan Metode Arima. Journal of Mathematics UNP, 4(2).

Melyani, C. A., Nurtsabita, A., Shafa, G. Z., & Widodo, E. (2021). Peramalan inflasi di Indonesia menggunakan metode Autoregressive Moving Average (ARMA). Journal of Mathematics Education and Science, 4(2), 67-74.

Margono, S. 2014. Metodologi Penelitian Pendidikan. Jakarta : PT Rineka Cipta.

Yosela, F. (2022). Penggunaan Metode Autoregressive Integrated Moving Average untuk Meramalkan Nilai Tukar Petani di Sumatera Barat (Doctoral dissertation, Universitas Negeri Padang).

Huda, M., Azizah, R. N. N., & Setyana, A. N. (2023). Implementasi Metode Arma Dalam Peramalan Inflasi Provinsi Banten. Jurnal Bayesian: Jurnal Ilmiah Statistika dan Ekonometrika, 3(2), 210-221.

Pemerintah Kota Pariaman. (2021). Laporan Kinerja Instansi Pemerintah Kota Pariaman tahun 2021. Pemerintah Kota Pariaman.

Amri, I. F., Ramadhan, W. N., Ainurrofiah, S., & Al Haris, M. (2023). Pemodelan ARIMA dan ARIMAX untuk Memprediksi Jumlah Produksi Padi di Kota Magelang. Square: Journal of Mathematics and Mathematics Education, 5(2), 93-105.

Rezaldi, D. A., & Sugiman, S. (2021, February). Peramalan Metode ARIMA Data Saham PT. Telekomunikasi Indonesia. In PRISMA, Prosiding Seminar Nasional Matematika (Vol. 4, pp. 611-620).




DOI: http://dx.doi.org/10.24036/unpjomath.v10i1.16934