Model Matematika Free Throw pada Permainan Bola Basket

Yogi Saputra -
Media Rosha -

Abstract


In basketball, basic skills such as Passing, Dribbling, Rebound, and Shooting are crucial. Shooting includes various techniques like one hand set shoot, jump shot, lay up, hook shot, runner, three-point shot, and free throw. A free throw is an unguarded shot that awards one point if successful. One of the factors that affects the success of executing a free throw is understanding the physics principles involved, such as parabolic motion, Magnus effect, gravitational force, and friction when the ball is in the air. During a free throw, the ball moves in three dimensions (3D). This applied research utilized secondary data and the numerical method of Runge-Kutta to determine the optimal trajectory of the ball during a free throw. The results indicate that an initial velocity of 10 m/s with a spin frequency of 3 rot/s and a shooting angle of 30°, as well as a shooting angle of 48° with a spin frequency of 3 rot/s and an initial velocity of 8 m/s, provide the best trajectory for scoring points.


Full Text:

PDF

References


REFERENSI

Sumiyarsono, D. 2002. Keterampilan Bola Basket. Yogyakarta: UNY.

Fahruna, Arijuddin. 2019. Pontianak Basketball Arena Tipe C di Kota Pontianak. Jurnal Online Mahasiswa Arsitektur Universitas

Tanjungpura, 7(1). 422-423.

Dimyati. 2018. Psikologi Olahraga. Yogyakarta: UNY Press.

FIBA. 2020. Official Basketball Rules 2020. Mies: FIBA Central Board.

Wismanadi, Himawan dan Ervi Irwati. 2019. Analisis Shooting Free Throw Kawhi Leonard MVP (Most Valuable Player) Final

NBA 2019. Jurnal Kesehatan Olahraga, 8(2). 119-124.

Fontanella, J. J. 2006. The Physics of Basketball. JHU Press.

Saputra, Roni. 2016. Fisika dalam Ilmu Kesehatan Masyarakat. Batam: STT Ibnu Sina Batam.

Munir, R. 2006. Metode Numerik Edisi Empat. Bandung: Informatika Bandung.

Tomy A, Media Rosha. (2019). Model Matematika Tendangan Sepak Pojok pada Olahraga Sepak Bola. Journal of Mathematics

UNP, Vol. 2, No. 3 (2022), halaman 80-85.

A.M. Zhafran, Arnellis,. (2022). Model Matematika SEIRS Penyebaran Penyakit Pneumonia pada Balita dengan Pengaruh

Vaksinasi. Journal of Mathematics UNP, Vol. 7, No. 3 (2022), halaman 121-127.

Luknanto. 2001.Metoda Numerik.Yogyakarta: UGM.

Widowati dan Sutimin. 2017.Buku Ajar Pemodelan Matematika.Yogyakarta: Beta Offset.

Ulfah N, Media Rosha. (2020). Model Matematika Terhadap Pemberian Gadget Tehadap anak Usia Dini. Journal of

Mathematics UNP, Vol. 3, No. 3 (2020), halaman 87-93.

Puspita L, Arnellis. (2023). Model Matematika Penyebaran Online Complusive Buying Disosder. Journal of Mathematics UNP,

Vol. 8, No. 2 (2023), halaman 62-71.

Meksianis. 2022. Pemodelan Matematika.Pekalongan: Nasya Expanding Management.

Bahtiar. 2017. PengantarFisika Dasar I. Mataram: LP2M UIN Mataram.

Ken Bray. 2007.Modellling The Flight of A Soccer Ball In A Direct Free Kick. Claverton Down: University of Bath.

Nurlina. 2017. Fisika Dasar I. Makassar: LPP Unismuh.

Sumarjono. 2005. Fisika Dasar I. Malang: Penerbit Universitas Negeri Malang.




DOI: http://dx.doi.org/10.24036/unpjomath.v8i3.14921