Residu b_{4,6}(n) terhadap modulo 2 dan 3
Abstract
Full Text:
PDFReferences
Abinash, S., Kathiravan, T., & Srilakshmi, K. (2019). Some New Congruences for -Regular Partitions Modulo . arXiv preprint arXiv:1907.08848.
Andrews, G. E., 1984, The Theory of Partition. Addison-Wesley Publishing Company, Massachusetts.
Andrews, G. E., and Eriksson, K. (2004). Integer partitions. Cambridge University Press.
Andrews, G. E. dan Berndt, B. C., 2005, Ramanujan Lost Notebook Part I. Springer Science+Business Media, Inc., NewYork.
Andrews, G. E. dan Berndt, B. C., 2005, Ramanujan Lost Notebook Part II. Springer Science+Business Media, Inc., NewYork.
Andrews, G. E., Askey, R., Roy, R., Roy, R., & Askey, R. (1999). Special functions (Vol. 71, pp. xvi+-664). Cambridge: Cambridge university press.
Baruah, N. D., and Ojah, K. K. (2012). Analogues of Ramanujan’s partition identities and congruences arising from his theta functions and modular equations. The Ramanujan Journal, 28(3), 385-407.
Baruah, N. D., and Ojah, K. K. (2015). Partitions With Designated Summands in Which All Parts Are Odd. Integers, 15(A9), 16.
Berndt, B. C. (2006). Number theory in the spirit of Ramanujan (Vol. 34). American Mathematical Soc..
Berndt, B. (2019). The Power of q: A Personal Journey.
Berndt, B. C. 2012. Ramanujan’s notebooks: Part III. Springer Science and Business Media.
Chan, H. C. (2011). An invitation to q-series: from Jacobi's triple product identity to Ramanujan's" most beautiful identity". World Scientific.
Chen, C. C., Koh, K. M., & Khee-Meng, K. (1992). Principles and techniques in combinatorics. World Scientific.
Cui, S. P., dan Gu, N. S. (2013). Arithmetic properties of ℓ-regular partitions. Advances in Applied Mathematics, 51(4), 507-523.
Hardy, G. H., dkk. (2008). An Introduction to the Theory of Numbers. Oxford Mathematics.
DOI: http://dx.doi.org/10.24036/unpjomath.v8i1.14329