Residu b_{4,6}(n) terhadap modulo 2 dan 3

Fadhlan Zhaahiran - Universitas Gadjah Mada
Uha Isnaini - Universitas Gadjah Mada

Abstract


Integer partition is a branch of number theory that is still developing today. A partition of a positive integer n is a way to express   as a sum of positive integers without counting the order. Let   denote the number of partitions of  . We discover arithmetic properties of   which is the number of partitions of an integer n where the parts are not multiple by 4 or 6.

Full Text:

PDF

References


Abinash, S., Kathiravan, T., & Srilakshmi, K. (2019). Some New Congruences for -Regular Partitions Modulo . arXiv preprint arXiv:1907.08848.

Andrews, G. E., 1984, The Theory of Partition. Addison-Wesley Publishing Company, Massachusetts.

Andrews, G. E., and Eriksson, K. (2004). Integer partitions. Cambridge University Press.

Andrews, G. E. dan Berndt, B. C., 2005, Ramanujan Lost Notebook Part I. Springer Science+Business Media, Inc., NewYork.

Andrews, G. E. dan Berndt, B. C., 2005, Ramanujan Lost Notebook Part II. Springer Science+Business Media, Inc., NewYork.

Andrews, G. E., Askey, R., Roy, R., Roy, R., & Askey, R. (1999). Special functions (Vol. 71, pp. xvi+-664). Cambridge: Cambridge university press.

Baruah, N. D., and Ojah, K. K. (2012). Analogues of Ramanujan’s partition identities and congruences arising from his theta functions and modular equations. The Ramanujan Journal, 28(3), 385-407.

Baruah, N. D., and Ojah, K. K. (2015). Partitions With Designated Summands in Which All Parts Are Odd. Integers, 15(A9), 16.

Berndt, B. C. (2006). Number theory in the spirit of Ramanujan (Vol. 34). American Mathematical Soc..

Berndt, B. (2019). The Power of q: A Personal Journey.

Berndt, B. C. 2012. Ramanujan’s notebooks: Part III. Springer Science and Business Media.

Chan, H. C. (2011). An invitation to q-series: from Jacobi's triple product identity to Ramanujan's" most beautiful identity". World Scientific.

Chen, C. C., Koh, K. M., & Khee-Meng, K. (1992). Principles and techniques in combinatorics. World Scientific.

Cui, S. P., dan Gu, N. S. (2013). Arithmetic properties of ℓ-regular partitions. Advances in Applied Mathematics, 51(4), 507-523.

Hardy, G. H., dkk. (2008). An Introduction to the Theory of Numbers. Oxford Mathematics.




DOI: http://dx.doi.org/10.24036/unpjomath.v8i1.14329