Aplikasi Machine Learning Untuk Forecasting Nilai Overall Equipment Effectiveness Pada Industri Manufaktur
Abstract
Manufacturing productivity is determined by machine performance. The problem that occurs in production machines is the occurrence of downtime so that the machine does not work optimally. One of the engine performance indicators is OEE. forecasting of the OEE value is needed so that manufactures can take action so they can maintain engine performance. The purpose of this research was to see the results of forecasting OEE value with machine learning linear regression algorithms and see the value of model evaluation with MAPE. The results of the study using training data and testing data obtained a multiple regression model with the variable y is OEE, the intercept coefficient is , and slope coefficient of the availability and performance variables is and . The model evaluation results are in the range<10%, meaning that the accuracy results had excellent forecasting model.
Full Text:
PDFReferences
Mardianto, E. G. (2016). Analisis Faktor-faktor Yang Mempengaruhi Penyerapan Tenaga Kerja Pada Sektor Industri Manufaktur di Kabupaten Bandung Tahun 2001-2014. In Dipublikasikan.
Nakajima, Seiichi. (1988). Introduction to Total Productive Maintenance. Student Study Guide, TPM100.
Badawy, M., El-Aziz, A. A. A., Idress, A. M., Hefny, H., & Hossam, S. (2016). A survey on exploring key performance indicators. Jurnal Inovasi Penelitian (JIP), 1(1–2), 47–52. https://doi.org/10.1016/j.fcij.2016.04.001.
Wiyatno, T. N., M. Fatchan, and A. Firmansyah 2018. “Implementasi Metode Overall Equipment Efectiveness ( Oee ) Guna
Mengukur Efektivitas Mesin Produksi,” pp. 559–566.
Rahmadhani, D. F., Taroepratjeka, H., & Fitria, L. (2014). Usulan Peningkatan Efektivitas Mesin Cetak Manual Menggunakan Metode Overall Equipment Effectiveness (OEE) (Studi Kasus Di Perusahaan Kerupuk TTN). Jurnal Teknik Industri Itenas, 02(2338–5081), 156–165.
Goldberg, D. E., & Holland, J. H. (1988). Genetic Algorithms and Machine Learning. In Machine Learning (Vol. 3, Issue 2). https://doi.org/10.1023/A:1022602019183
Daqiqil, I. (2021). Machine Learning (Teori, Studi Kasus dan Implementasi Menggunakan python (Edisi 1). UR Press.
Musyafa’ah, & Sofiana, A. (2022). Analysis of Total Productive Maintenance (TPM) Application Using Overall Equipment Effectiveness (OEE) and Six Big Losses on Disamatic Machine PT. XYZ. Opsi, 15(1), 56.
Ayuni, G. N., & Fitrianah, D. (2019). Penerapan Metode Regresi Linear Untuk Prediksi Penjualan Properti Pada PT XYZ. Jurnal Telematika, 14(2), 79–86. https://journal.ithb.ac.id/telematika/article/view/321
Radhi, M., Amalia, Sitompul, D. R. H., Sinurat, S. H., & Indra, E. (2022). Analisis Big Data Dengan Metode Exploratory Data Analysis (EDA) Dan Metode Visualisasi Menggunakan Jupyter Notebook. Jurnal Sistem Informasi Dan Ilmu Komputer Prima(JUSIKOM PRIMA), 4(2), 23–27. https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v4i2.2475
Sholeh, M., Suraya, S., & Andayati, D. (2022). Machine Linear untuk Analisis Regresi Linier Biaya Asuransi Kesehatan dengan Menggunakan Python Jupyter Notebook. JEPIN (Jurnal Edukasi Dan Penelitian Informatika), 8(1), 20–27. https://jurnal.untan.ac.id/index.php/jepin/article/view/48822
Dama, H. R. A., Supianto, A. A., & Setiawan, N. Y. (2021). Analisis Penggunaan Model Regresi untuk Prediksi Penjualan Spare Part pada AHASS Nur Andhita Grogol. 5(12), 5591–5603.
Boediono, & Koster, W. (2008). Teori dan Aplikasi Statistika dan Probabilitas (L. Suryani (ed.); Edisi Keem). PT Remaja Rosdakarya.
Supranto. (1988). Statistik Teori dan Aplikasi Jilid 2 (Ju. Mulyadi (ed.); Edisi Keli). Erlangga.
Lawrence, K. D., Klimberg, R. K., & Lawrence, S. M. (2009). Fundamentals of Forecasting Using Excel. In Australian Health Service Alliance (Issue 1).
DOI: http://dx.doi.org/10.24036/unpjomath.v8i2.14283