Synthesis of Graphene Oxide from Sugarcane Bagasse by Using Modified Hummers Method as a Microwave Absorber

Mila Rahma - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Ramli - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Gusnedi - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Yohandri - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131

Abstract


Bagasse, a residue from sugarcane processing, is chosen as the raw material due to its potential as an environmentally friendly, inexpensive, and easily obtainable carbon source. The modified Hummers method is a modification of the original Hummers method, incorporating thermal treatment in the initial synthesis stage to enhance the efficiency and quality of synthesis. The thermal treatment aims to improve the efficiency and quality of the synthesized graphene oxide. The modification is carried out in the synthesis process to obtain a high-quality product with better efficiency. Furthermore, this modification can also reduce synthesis time and minimize the risk of damage to the raw material. After the synthesis process is completed, the produced graphene oxide is characterized using various analytical techniques, including Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The synthesized graphene oxide is then tested for its ability to absorb microwaves at X-band frequencies (8-12 GHz). The characterization results indicate that the synthesized graphene oxide possesses a homogeneous structure with thin graphene layers and a clean surface. Moreover, the graphene oxide also exhibits excellent microwave absorption properties at an X-band frequency of 10.16 GHz, with a reflection loss value of -23.94 dB, absorption coefficient of 93.65%, and absorption bandwidth of 1.13 GHz. The test results demonstrate that the graphene oxide derived from bagasse exhibits significant absorption capabilities towards microwaves at specific frequencies. This indicates the potential application of graphene oxide as an effective microwave absorber material.

References


Zhao J, Liu L, Li F. Graphene Oxide: Physics and Applications. New York: Springer; 2015. p. 3. DOI: 10.1007/978-3-662-44829-8

Ray SC. Applications of Graphene and Graphene-Oxide Based Nanomaterials. Waltham: William Andrew; 2015. p. 39. DOI: 10.1016/C2014-0-02615-9

Stankovich S, Piner RD, Nguyen ST, Ruoff RS. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon. 2006;44:3342-3347. DOI: 10.1016/j.carbon.2006.06.004

Zhu Y, Stoller MD, Cai W, Velamakanni A, Piner RD, Chen D, et al. Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano. 2010;4:1227-1233. DOI: 10.1021/nn901689k

Li F, Jiang X, Zhao J, Zhang S. Graphene oxide: A promising nanomaterial for energy and environmental applications. Nano Energy. 2015;16:488-515. DOI: 10.1016/j.nanoen.2015.07.014

Hu BB, Wang K, Wu L, Yu SH, Antonietti M, Titirici MM. Engineering carbon materials from the hydrothermal carbonization process of biomass. Advanced Materials. 2010;22:813-828. DOI: 10.1002/adma.200902812

Miao M, Zuo S, Zhao Y, Wang Y, Xia H, Tan C, et al. Selective oxidation rapidly decomposes biomass-based activated carbons into graphite-like crystallites. Carbon. 2018;40:504-507. DOI: 10.1016/j.carbon.2018.09.018

Bishnu PT, Huimin L, Phillip H, Harry MM, John RD, Sheng D. Low-cost transformation of biomass-derived carbon to high-performing nano-graphite via low-temperature electrochemical graphitization. ACS Applied Materials & Interfaces. 2021;13:4393-4401. DOI: 10.1021/acsami.0c19395

Karimah, M., & Sudibandriyo, M. (2013). Pembuatan karbon aktif berbahan baku ampas tebu dengan aktivasi termal menggunakan karbon dioksida (CO2) dengan variasi laju alir dan temperatur aktivasi. Jurnal. Universitas Indonesia. Available at: http://lib. ui. ac. id/naskahringkas/2015-09/S-Mahfuzhoh Karimah.

Wang, J., Salihi, E., & Siller, L. (2017). Greean reduction of graphene oxide using alanine. Elsevier , 1-6.

Syakir, N., Nurlina, R., Anam, S., Aprilia, A., Hidayat, S., & Fitrilawati. (2015). Kajian Pembuatan Oksida Grafit untuk Produksi Oksida Graphenea dalam Jumlah Besar. Jurnal Fisika Indonesia, 26-29.Banerjee, A. IoT Based Air Pollution Monitoring System (Doctoral dissertation, University of Technology, 2022.

Yuen, F., & Hameed, B. (2009). Recent Developments in the Preparation and Regeneration of Activated Carbons.

Chen, J., Yao, B., Li, C., & Shi, G. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Elsevier, 225-229

Thebora, M., Ningsih, K., & Shalihin, M. (2019). SINTESIS GRAPHENEA DARI LIMBAH PELEPAH SAWIT (Elaeis Sp.) DENGAN METODE REDUKSI GRAFIT OKSIDA MENGGUNAKAN PEREDUKSI Zn. Khazanah Intelektual, 462-476.M. F. Dvali and M. D. Belonin, “Prospects for deep and ultradeep oil and gas deposits in u.s.s.r.,” Int. Geol. Rev., vol. 8, no. 6, pp. 665–675, 1966, doi: 10.1080/00206816609474324

Ikhsan, M. d. (2020). Measurements and Analysis of Activated Carbon Crystal Structures from Oil Palm Empty Fruit Bunch Biomass Waste. Journal of Physics, 1-4.

Fadhilah, M., Ramli, Gusnedi, & Yohandri. (2019). PENGARUH SUHU SINTERING PADA PENYERAPAN GELOMBANG MIKRO NANOKOMPOSIT NiFe2O 4 / PVDF UNTUK MATERIAL PENYERAP RADAR. Pillar of Physics, 98-103.

Mu’minin, N. U. (2018). Pengaruh Lama Sintering Terhadap Karakteristik Zinc Ferrite (Znfe2o4) Untuk Aplikasi Penyerap Gelombang Mikro. Skripsi.KENDARI: UNIVERSITAS HALUOLEO.

Mantia, Y. (2015). Pengaruh Suhu Sintering Terhadap Sifat Penyerap Gelombang Mikro dari Nanokomposit CoFe2O4/PVDF yang Dipreparasi dengan Metode Sol-Gel. Skripsi, 73.




DOI: http://dx.doi.org/10.24036/14821171074