Penerapan Metode Dekomposisi Sumudu untuk Menyelesaikan Persamaan Diferensial Biasa Orde Tiga Non Linear

rizky hamdanih - Jurusan Matematika Universitas Negeri Padang
riry sriningsih - Jurusan Matematika Universitas Negeri Padang

Abstract


Abstract– This research discusses about the third order non linear ordinary differential equations. To solve the third order non linear ordinary differential equation we can using the Sumudu decomposition method.The Sumudu decomposition method is a combination of the Sumudu transform and the decomposition method which involving Adomian polynomial. This study aims to determine the completion steps and solutions has obtained from the application of the Sumudu decomposition method in to the third order non linear ordinary differential equations. The final solution obtained from the Sumudu decomposition method is a series solution.

KeywordsOrdinary Differential Equations (ODE), Third Order Non Linear ODE, Sumudu.


Full Text:

PDF PDF

References


Ross, Sheply L. 1989. Introduction To Ordinary Differential Equations - 4th Edition. John Wiley and Sons, Canada.

Watugala, George K. 1993. “Sumudu Transform: A New Integral Transform To Solve Diferential Equations and Control Engineering Problems”. Https://doi.org/10.1080/0020739930240105 diakses pada tanggal 10 Februari 2019.

Mahanani, N. A., Mariatul K., dan Evy S. 2016. “Analisis Metode Dekomposisi Sumudu dan Modifikasinya Dalam Menentukan Penyelesaian Persamaan Diferensial Parsial Nonlinear”.. Http://jurnal.untan.ac.id/index.php/jbmstr/article/view/155651369 8 diakses pada tanggal 10 Februari 2019.

Belgacem, F. B. M., and Karabali, A. A. 2006. “Sumudu Transform Fundamental Properties Investigations and Applications”.https://www.researchgate.net/publication/41448911_Sumudu_transform_fundamental_properties_investigations_and_applications/download diakses pada tanggal 10 Februari 2019.

Bildik, Necdet and Deniz, Sinan. 2016. “The Use of Sumudu Decomposition Method for Solving Predator-Prey Systems”. Http://dx.doi.org/10.18576/msl/050310 diakses pada tanggal 10 Februari 2019.




DOI: http://dx.doi.org/10.24036/unpjomath.v4i3.7187