Modifikasi Algoritma Kriptografi RSA Multiprima Menggunakan Chinese Remainder Theorem dan Garner’s Algorithm

Fatimah Johari - Student of Mathematics Department Universitas Negeri Padang, Indonesia
Dewi Murni - Lecturers of Mathematics DepartmentUniversitas Negeri Padang, Indonesia
Hendra Syarifuddin - Lecturers of Mathematics DepartmentUniversitas Negeri Padang, Indonesia

Abstract


Abstract–Cryptographic algorithms multiprime RSA (Rivest-Shamir-Adleman)  is one of the public key cryptographic algorithms that are widely used, because the algorithm is easily applied and security is also guaranteed. But on the other hand this algorithm has drawbacks, namely the process of decryption a takes a relatively long time because using modular exponentiation. To address this, it will do modifications to the process of decrypting RSA Cryptographic algorithms multiprime by finding a method that can cut the number of modular exponentiation operation is great modular exponentiation operation into several smaller ones. This modification is only focused on the process of decryption is done by leveraging the next reminder: chinese theorem can be solved using Garner's algorithm. This modification of the results obtained a new private key used for decryption process

 

Keywords –Cryptography, Multiprime RSA, Chinese Remainder Theorem(CRT), Garner’s Algorithm


Full Text:

PDF

References


Hinek, M. Jason.2006 On the Security of Multi-prime RSA:University of Waterloo.

Sadikin Rifki. 2012. Kriptografi Untuk keamananan Jaringan . Yogyakarta : And

Stinson. D. R 1995. Criphtography Teory and Practise. CRC Press. Boca Raton : Florida

Takagi, Tsuyoshi. 2003. Efficiency Comparison of Several RSA 'Variants. Camille Vuillaume

Johari, Fatimah Putri. 2016. Modifikasi Algoritma Kriptografi RSA Multiprima Menggunakan Chinesee Remainder Theorem dan Garner’s Algorithm. Padang: Universitas Negeri Padang




DOI: http://dx.doi.org/10.24036/unpjomath.v4i2.6311