PENYELESAIAN PERSAMAAN NON LINEAR MENGGUNAKAN METODE ITERASI TIGA LANGKAH
Abstract
Full Text:
PDFReferences
R. Munir, Metode Numerik, Lima. Bandung: Informatika Bandung, 2021.
D. V. Griffiths and I. M. Smith, Numerical Methods for Engineers. McGraw-Hill Science/Engineering/Math, 2006. doi: 10.1201/9781420010244.
R. Thukral and M. S. Petković, “A family of three-point methods of optimal order for solving nonlinear equations,” J. Comput. Appl. Math., vol. 233, no. 9, pp. 2278–2284, 2010, doi: 10.1016/j.cam.2009.10.012.
S. Yaseen, F. Zafar, and F. I. Chicharro, “A Seventh Order Family of Jarratt Type Iterative Method for Electrical Power Systems,” Fractal Fract., vol. 7, no. 4, pp. 1–16, 2023, doi: 10.3390/fractalfract7040317.
M. S. K. Mylapalli, R. K. Palli, and R. Sri, “A ninth order iterative method for solving non-linear equations with high-efficiency index,” Adv. Math. Sci. J., vol. 9, no. 7, pp. 5283–5290, 2020, doi: 10.37418/amsj.9.7.97.
M. Nazir, Metode Penelitian. Jakarta: Galia Indonesia, 2014.
S. Hanzely, D. Kamzolov, D. Pasechnyuk, A. Gasnikov, P. Richtárik, and M. Takáč, “A Damped Newton Method Achieves Global O(1/K2) and Local Quadratic Convergence Rate,” Adv. Neural Inf. Process. Syst., vol. 35, no. NeurIPS, pp. 1–15, 2022.
W. Zhou, X. Wei, L. Wang, and G. Wu, “A superlinear iteration method for calculation of finite length journal bearing’s static equilibrium position,” R. Soc. Open Sci., vol. 4, no. 5, 2017, doi: 10.1098/rsos.161059.
DOI: http://dx.doi.org/10.24036/unpjomath.v10i1.17052