Implementasi Fuzzy Time Series Logika Singh Untuk peramalan Nilai Ekspor Nilam di Indonesia

Rahmadita Putri -
Muhammad Subhan -

Abstract


Patchouli is used as one of the mixtures of cosmetic products, food industry, paint making, aromatherapy, and various other industrial needs and is needed by various types of industries in various countries. Due to the high world demand for patchouli, a prediction is made to anticipate uncertainty so that an estimate is obtained that is close to the actual situation. The method that can be used is the Singh logic fuzzy time series method. This research is an applied research, where the data taken is the data on the value of patchouli exports in Indonesia in the period January 2020 to July 2024. The results of forecasting the value of patchouli export data in Indonesia with this method are then measured for accuracy using MAPE. From the Singh logic fuzzy time series forecasting method, the MAPE obtained was 7,215%. Based on the MAPE, forecasting export value in Indonesia with Singh's fuzzy time series logic has a very good level of accuracy. For the following period, the export value of patchouli is projected to be US$ 29,638,657.15 for August 2024, US$ 28.212.795,11 for September 2024, and US$ 28.277.533,23 for October 2024. The Predicted value is categorized qith a very high export value of patchouli.

Full Text:

PDF

References


A. Naba, Belajar Cepat Fuzzy Logic Menggunakan Matlab. Yogyakarta: Andi, 2009.

E. Feriyanto and N. Prima, “Monthly rainfall forecasting using high order singh’ s fuzzy time series based on interval ratio methods: Case study Semarang City , Indonesia,” vol. 26, no. 8, pp. 71-88, 2024

Hasibuan, S., Asdi, Y., & Nazra, A. (2024). PERAMALAN HARGA MINYAK MENTAH DUNIA MENGGUNAKAN METODE FUZZY TIME SERIES LOGIKA SINGH. Jurnal Matematika UNAND, 13(1), 66–74.

K. Nugroho, “Model Analisis Prediksi Menggunakan Metode Fuzzy Time Series,” Jurnal Infokam., vol. 8, no. 1, pp. 46-50, 2016.].

Kementrian Pertanian Republik Indonesia.(2024). Fokus Pembangunan Perkebunan.Diakses dari https://ditjenbun.pertanian.go.id/ (5/1/2025,20.17)

Makridakis, S., Wheelwright, S. C., & McGee, V. E. (1999). Metode dan Aplikasi Peramalan (Kedua). Erlangga.

Mangun, H. M. S., Waluyo, H., & Purnama S, A. (2012). Nilam. Penebar Swadaya.

S. Kusumadewi and S. Hartati, Integrasi Sistem Fuzzy & Jaringan Syaraf, edisi 2. Yogyakarta: Graha Ilmu, 2010.

Safira, M., Borahima, B., Sain, H., Setiawan, I., & Fadri, F. (2024). Implementation of the Fuzzy Time Series Singh Method for Forecasting Non-Oil and Gas Export Values in Indonesia (Implementasi Metode Fuzzy Time Series Singh Untuk Peramalan Nilai Ekspor Non Migas di Indonesia). BERKALA SAINSTEK 2024, 12(3), 125–131. https://doi.org/10.19184/bst.v12i.3.52663

Sari, P. N., & Hartono, S. (2010). Analisis Dinamika Ekspor Minyak Nilam Indonesia ke Amerika Serikat. Agro Ekonomi, 17, 19–28.

Singh, S. R. (2007a). A simple method of forecasting based on fuzzy time series. Applied Mathematicsand Computation, 186(1), 330–339. https://doi.org/10.1016/j.amc.2006.07.128

Sutedi Adrian. (2014). Hukum Ekspor Impor. Raih Asa Sukses.

Wang, Y., Lei, Y., Fan, X., & Wang, Y. (2016). Intuitionistic Fuzzy Time Series Forecasting Model Based on Intuitionistic Fuzzy Reasoning. Mathematical Problems in Engineering, 2016. https://doi.org/10.1155/2016/5035160

Widjadja, G. (2008). Strategi dan Kebijakan Perdagangan Internasional. Salemba Empat.

Zamani, H. (2020). PERBANDINGAN METODE FUZZY TIME SERIES MODEL CHEN DAN SINGH PADA NILAI EKSPOR INDONESIA TAHUN 1999-2020. http://repository.unimus.ac.id




DOI: http://dx.doi.org/10.24036/unpjomath.v10i1.17047