Metode Iteratif Bebas Turunan Tinggi Untuk Persamaan Non Linear
Abstract
Full Text:
PDFReferences
J. . Rice, Numerical Methods in Software and Analysis, Second. Academic Press, 1993. doi: 10.1016/C2009-0-22414-7.
S. . Chapra and R. . Canale, Numerical Methods for Engineers, no. November. bandung: New York: McGraw-Hill Science/Engineering/Math, 1990.
R. Munir, Metode Numerik, Lima. Bandung: Informatika Bandung, 2021.
R. L.Burden and J. Douglas Faires, Numerical Analysis, Ninth. 2010.
M. N. Muhaijir and L. L. Nanda, “Metode Iterasi Tiga Langkah Bebas Turunan Orde Konvergensi Delapan untuk Menyelesaikan Persamaan Nonlinear,” vol. 2, no. 2, pp. 74–80, 2017.
C. Chun and B. Neta, “A new sixth-order scheme for nonlinear equations,” Appl. Math. Lett., vol. 25, no. 2, pp. 185–189, 2012, doi: 10.1016/j.aml.2011.08.012.
O. . Solaiman and I. Hashim, “Two new efficient sixth order iterative methods for solving nonlinear equations,” J. King Saud Univ. - Sci., vol. 31, no. 4, pp. 701–705, 2019, doi: 10.1016/j.jksus.2018.03.021.
R. Qudsi and M. Imran, “A sixth-order iterative method free from derivative for solving multiple roots of a nonlinear equation,” Appl. Math. Sci., vol. 8, no. 113–116, pp. 5721–5730, 2014, doi: 10.12988/ams.2014.47567.
S. K. Parhi and D. K. Gupta, “A sixth order method for nonlinear equations,” Appl. Math. Comput., vol. 203, no. 1, pp. 50–55, 2008, doi: 10.1016/j.amc.2008.03.037.
E. Sharma and S. Panday, “Efficient sixth order iterative method free from higher derivatives for nonlinear equations,” J. Math. Comput. Sci., pp. 1–13, 2022, doi: 10.28919/jmcs/6950.
M. Nazir, Metode Penelitian. Jakarta: Galia Indonesia, 2014.
S. Li, “Fourth-order iterative method without calculating the higher derivatives for nonlinear equation,” J. Algorithms Comput. Technol., vol. 13, 2019, doi: 10.1177/1748302619887686.
J. Stewart, calculus Early Transcendentals, 8th ed. Cengage Learning, 2015.
S. Hanzely, D. Kamzolov, D. Pasechnyuk, A. Gasnikov, P. Richtárik, and M. Takáč, “A Damped Newton-Raphson Method Achieves Global O(1/K2) and Local Quadratic Convergence Rate,” Adv. Neural Inf. Process. Syst., vol. 35, no. NeurIPS, pp. 1–15, 2022.
W. Zhou, X. Wei, L. Wang, and G. Wu, “A superlinear iteration method for calculation of finite length journal bearing’s static equilibrium position,” R. Soc. Open Sci., vol. 4, no. 5, 2017, doi: 10.1098/rsos.161059.
DOI: http://dx.doi.org/10.24036/unpjomath.v9i3.16669