Peramalan Jumlah Penerbitan Surat Izin Mengemudi Berjenis C di Satlantas Polresta Padang dengan Menggunakan Metode ARIMA

Annisa Yeni - Univesitas Negeri Padang

Abstract


A driving license (SIM) is an important indicator of traffic planning and management in a given area. Therefore, we will forecast the number of C-SIMs issued in the future to help the Polri agency plan traffic policy authority, allocate power resources, and manage infrastructure effectively. The study aims to apply the ARIMA methodology in analyzing and predicting the number of C-IDs issued for the period from July 2024 to June 2025. The study utilizes historical data on the number of C-SIMs issued from January 2019 to June 2024. The results showed that the ARIMA (1,1,1) model produced a prediction of the number of SIM C issuances at the Padang Police Traffic Unit for the period July 2024 to June 2025, with the estimated number ranging from 1900 to 1578.


Full Text:

PDF

References


D. Susilo, Panduan Praktis Berlalu Lintas, Jakarta, 2009.

R. Yuliyanti and E. Arliani, "Peramalan jumlah penduduk menggunakan model arima," vol. 8, pp. 114-128, 2022.

S. M. Saragih, "Analisis Perbandingan Metode ARIMA dan Double Exponential Smoothing dari Brown Pada Peramalan Inflasi Di Indonesia," Journal Of Fundamental Mathematics and Applications (JFMA), vol. 5, pp. 176-191, 2022.

S. P. Fauzani, "Penerapan Metode ARIMA Dalam Peramalan Harga Produksi Karetdi Provinsi RiauSalsabila Putri Fauzani1, Depriwana Rahmi2*1,2Pendidikan Matematika,Fakultas Tarbiyah dan Keguruan, Universitas Islam Negeri Sultan Syarif KasimJl.HR. Soebrantas No.Km. 15, Tuah Ka," Jurnal Teknologi dan Manajemen Industri Terapan(JTMIT), vol. 2, pp. 269 -277, 2023.

E. N. Faida, "Analisis Cadangan Premi Asuransi Jiwa," Jurnal Ilmiah Ekonomi Modern dan Tradisional, vol. 1, pp. 39-46, 2024.

H. Hassyddiqy, "Analisis Peramalan (Forecasting) Penjualan Dengan Metode ARIMA," Jurnal Data Science, vol. 2, pp. 92-100, 2023.

H. Wiguna1, "Kebijakan Berbasis Data: Analisis dan Prediksi Penyebaran COVID-19 di Jakarta dengan Metode Autoregressive Integrated Moving Average (ARIMA)," Jurnal Sistem Cerdas, vol. 3, pp. 74 - 83, 2020.

J. Fattah, "Forecasting of demand using ARIMA," International Journal of Engineering, vol. 1, pp. 1-9, 2018.

G. M. J. G. C. R. a. G. M. L. George E. P. Box, Time Series Analysis: Forecasting and Control,5th Edition, Wiley Online Library, 2015.

F. Irina, Metode penelitian terapan, Yogyakarta: Parama Ilmu, 2017.

S. Makridakis, S. C. Wheelwright and V. E. McGee, Metode dan aplikasi peramalan, Jakarta : Erlangga, 1999.

A. K. Rachmawati, "Peramalan Penyebaran Jumlah Kasus Virus Covid-19 Provinsi Jawa Tengah dengan Metode Arima," Zeta – Math Journal, vol. 6, pp. 11-16, 2021.

D. Priyadi, "Model Autoregressive Integrated Moving Average (ARIMA) dalam Peramalan Nilai Harga Saham Penutup Indeks LQ45," Jurnal Ilmiah Informatika Komputer, vol. 26, pp. 78-94, 2021.

Aswi and Sukarna, Analisis deret waktu : teori dan aplikasi, Makassar: Andira Publisher, 2006.

W. Ngestisari, B. Susanto and T. Mahatma, "Perbandingan Metode ARIMA dan Jaringan Syaraf Tiruan untuk," Indonesian Journal of Data and Science, vol. 1, pp. 96-107, 2020.




DOI: http://dx.doi.org/10.24036/unpjomath.v9i3.16324