Penentuan Akar Persamaan Non Linier Menggunakan Metode Iterasi Tanpa Menghitung Turunan yang Lebih Tinggi
Abstract
The iteration method without calculating higher derivatives is one of the numerical methods which is included in the group of open methods. This iteration method is derived based on the third truncated Thiele’s continuous fraction. To avoid calculating higher derivatives, an approximation of the second and third derivatives is used in determining the roots. This research aims to determine the roots of non-linear equations using the iteration method without calculating higher derivatives. This type of research is basic research. Based on the discussion results, it was found that the iteration method without calculating higher derivatives uses two-step in determining the root. The convergence analysis shows that the iteration method without calculating higher derivatives has a convergence order of four. The algorithm of the iteration method without calculating higher derivatives is shown in the form of a flowchart.
Keywords: Non-linear equation, Thiele’s continued fraction, Viscovatov algorithm, iterative method, order of convergence
Full Text:
PDFReferences
Santoso, F. G. I. (2011). Analisis Perbandingan Metode Numerik Dalam Menyelesaikan Persamaan-Persamaan Serentak. Widya Warta, 35(1), 19–39.
Munir, R. (2021). Metode Numerik Revisi Kelima. Bandung: Informatika Bandung.
Khandani, H., & Khojasteh, F. (2021). A new method for estimating the real roots of real differentiable functions. 2, 1–13.
Traub, J. (1964). Iterative Methods for the Solution of Equations. New York: Prentice-Hall.
Khan, W. A., Noor, K. I., Bhatti, K., & Ansari, F. A. (2015). A new fourth order Newton-type method for solution of system of nonlinear equations. Applied Mathematics and Computation, 724-730.
Li, S. (2019). Fourth-order iterative method without calculating the higher derivatives for nonlinear equation. Journal of Algorithms and Computational Technology, 13.
Ahmad, N., & Singh, V. P. (2016). Some New Three Step Iteration Methods for Solving Nonlinear Equation Using Steffensen's and Halley Method. British Journal of Mathematics and Computer Science, 1-9.
Ogbereyivwe, O., Umar, S., & Izevbizua, O. (2023). Some High-Order Convergence Modifications of the Householder Method for Nonlinear Equations.
Pahirya, M. M. (2020). Application of a Continuant to the Estimation of a Remainder Term of Thiele's Interpolation Continued Fraction . Journal of Mathematical Sciences, 687-700.
Li, S., & Dong, Y. (2019). Viscovatov-Like Algorithm of Thiele-Newton's Blending Expansion of a bivariate function. Mathematics, 7(8), 1-15.
Gunawan, H. (2016). Pengantar Analisis Real. Bandung: Institut Teknologi Bandung.
Argyros, I. K., & Magreñán, Á. A. (2015). On the convergence of an optimal fourth-order family of methods and its dynamics. Applied Mathematics and Computation, 252, 336-346.
Susanto, W. E., & Syukron, A. (2020). Logika & Algorilma untuk Pemula. Yogyakarta: Graha Ilmu.
Zakaria, L., & Muharramah, U. (2023). Metode Numerik (Solusi Masalah Dengan Matematika). Bandar Lampung: Anugrah Utama Raharja.
Argyros, I. K., & Magreñán, Á. A. (2016). A study on the local convergence and the dynamics of Chebyshev–Halley–type methods free from second derivative. Numerical Algorithms, 71(1), 1-23.
DOI: http://dx.doi.org/10.24036/unpjomath.v9i3.16230