Perhitungan Invers Kinematik pada Jalan Robot Humanoid

Annisa Rahmawati -
Yusmet Rizal -

Abstract


Inverse kinematics is a mathematical calculation for robot motion design. With the known value of the desired coordinate point, this calculation determines the angles needed to move each joint on the robot. One of the solutions to the inverse kinematic equation can use the geometric approach method. This method is used to obtain angles on each axis of robot motion so that the end-effector can reach the desired position. In this geometric method approach, the three-dimensional (3D) viewpoint is decomposed into a two-dimensional (2D) viewpoint to facilitate the analysis and calculation process. Humanoid robots have 4 phases to walk, namely Double Support Phase, Pre-swing Phase, Single Support Phase, and Post-Swing Phase. By implementing the inverse kinematic formula into the C++ programming language, the humanoid robot can walk by entering the x, y, and z coordinate values. The x coordinate value regulates the tilt of the robot, the y coordinate value regulates the back and forth movement of the robot's legs, and the z coordinate value regulates the height of the robot's legs.


Full Text:

PDF

References


M. Sanjaya, Membuat Robot Bersama Profesor Bolabot. Yogyakarta: Gava Media, 2013.

W. Budhiarto dan P. A. Nalwan, “Membuat Sendiri Robot Humanoid.” hal. 112, 2009.

M. Hirose dan K. Ogawa, “Honda humanoid robots development,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 365, no. 1850, hal. 11–19, 2007, doi: 10.1098/rsta.2006.1917.

J. W. Kusuma, P. Shinta, dan H. Dedy, “Penerapan Invers kinematik Terhadap Pergerakan Kaki Pada Robot Hexapod,” Robotics, hal. 10, 2015.

A. Gupta, “A Geometric Approach to Inverse Kinematics of a 3 DOF Robotic Arm,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 6, no. 1, hal. 3524–3530, 2018, doi: 10.22214/ijraset.2018.1491.

M. Ali et al., “INVERS KINEMATIK ROBOT ARM 4 DOF MENGUNAKAN SENSOR LEAP MOTION PENDAHULUAN Latar Belakang Masalah Peran robotika sangatlah besar dalam kehidupan , sehingga manusia selalu berusaha mengembangkan pengetahuan-pengetahuan tentang robot . Robot adalah seperang,” vol. 6, no. 1, hal. 363–371, 2020.

F. Widia dan R. Risfendra, “Penerapan Metode Invers Kinematic pada Rancangan Pergerakan Kaki Robot Humanoid,” JTEIN J. Tek. Elektro Indones., vol. 2, no. 1, hal. 128–135, 2021, doi: 10.24036/jtein.v2i1.144.

E. Pitowarno, Robotika Desain, Kontrol, dan Kecerdasan Buatan. Yogyakarta: C.V Andi Offset, 2006.

W. Jatmiko et al., Robotika Teori Dan Aplikasi. 2012. [Daring]. Tersedia pada: https://www.researchgate.net/profile/Wisnu-Jatmiko/publication/305769100_Robotika_Teori_dan_Aplikasi/links/57a0664608aec29aed23f914/Robotika-Teori-dan-Aplikasi.pdf

S. Setiawan, Firdaus, B. Rahmadya, dan Derisma, “Penerapan Invers Kinematika Untuk Pergerakan Kaki Robot Biped,” no. November, hal. 1–9, 2015.

T. Y. E. Siswono dan N. Lastiningsih, Matematika SMP dan MTs 2. Semarang: Erlangga, 2007.

Arnellis, Aljabar dan Trigonometri. Jakarta: Kencana, 2016.

B. Utomo et al., “134658-ID-analisa-forward-dan-inverse-kinematics-p,” vol. 1, no. 3, hal. 11–20, 2013.

S. Gómez et al., “Design of a 4-Dof Robot Manipulator with Optimized Algorithm for Inverse Kinematics Design of a 4-DOF Robot Manipulator with Optimized Algorithm for Inverse Kinematics,” Int. J. Mech. Mechatronics Eng., vol. 9, no. 6, hal. 929–934, 2016.

E. Budiman, “Belajar Dasar Algoritma & Pemograman,” hal. 18–19, 2016.




DOI: http://dx.doi.org/10.24036/unpjomath.v9i2.15816