Model Persediaan Fuzzy dengan Kredit Perdagangan dan Kendala Kapasitas Gudang untuk Barang yang Mengalami Deteriorasi
Abstract
Economic Order Quantity (EOQ) model is a model for inventory management decision-making. The basic EOQ model is not entirely realistic, as it neglects several factors that impact inventory management decisions, leading to suboptimal outcomes. This study aims to form and analyze the inventory model from the development of EOQ model. Market competition, seasonal changes, promotional reach, and unexpected events can cause uncertainty. Fuzzy set theory is used to overcome this uncertainty, namely demand rate and deterioration rate are represented by fuzzy numbers. Trade credit and limited capacity of the company’s warehouse are also considered, so the rented warehouse is used. The fuzzy model is deffuzified by graded mean integration representation method. Results include a model for optimal order quantity, the optimal time for rented warehouse inventory depletion, and the minimum total cost. Numerical simulation and sensitivity analysis demonstrate the model’s applicability and highlight the impact of parameter changes.
Full Text:
PDFReferences
R. Setiyani, D. P. Astuti, A. K. Widiatami, S. Lianingsih, and N. Luthfiyah, Pengantar Akuntansi Perusahaan Jasa dan Dagang. Yogyakarta: Jejak Pustaka, 2021.
H. A. Rusdiana, Manajemen Operasi. Bandung: CV Pustaka Setia, 2014.
S. Agarwal, “Economic Order Quantity Model: A Review,” VSRD International Journal of Mechanical, Civil, Automobile and Production Engineering, vol. 4, no. 12, pp. 233-236, Dec 2014.
Julyanthry et al., Manajemen Produksi dan Operasi. Medan: Yayasan Kita Menulis, 2020.
R. D. Reid and N. R. Sanders, Operations Management An Integrated Approach, 4th ed. Hoboken: John Wiley & Sons, Inc., 2011.
N. Slack, A. B. Jones, and R. Johnston, Operations Management, 7th ed. London: Pitman Publishing, 2013.
V. Kumar and P. Kumar, “Modeling of an Inventory System with Variable Demands and Lead Times Using a Fuzzy Approach,” Optimal Inventory Control and Management Techniques, pp. 133-151, Mar 2016, doi: 10.4018/978-1-4666-9888-8.ch007.
H. Öztürk, “Optimization of fuzzy production inventory models for crisp or fuzzy production time,” Pakistan Journal of Statistics and Operation Research, vol. 14, no. 3, pp. 661-695, 2018, doi: 10.18187/pjsor.v14i3.1959.
J. Ray, “Deterioration and its Uncertainty in Inventory Systems,” Global Journal of Pure and Applied Mathematics, vol. 13, no. 8, pp. 4003-4014, 2017.
B. A. Kumar, S. K. Paikray, and H. Dutta, “Cost optimization model for items having fuzzy demand and deterioration with two-warehouse facility under the trade credit financing,” AIMS Mathematics, vol. 5, no. 2, pp. 1603-1620, Feb 2020, doi: 10.3934/math.2020109.
N. K. Kaliraman, R. Raj, S. Chandra, and H. Chaudhary, “Two warehouse inventory model for deteriorating item with exponential demand rate and permissible delay in payment,” Yugoslav Journal of Operations Research, vol. 27, no. 1, pp. 109-124, Apr 2016, doi: 10.2298/YJOR150404007K.
E. R. Wulan and V. Andyan, “Model EOQ Fuzzy dengan Fungsi Trapesium dan Segitiga Menggunakan Backorder Parsial,” JURNAL ISTEK, vol. 7, no. 3, pp. 59-73, 2013.
E. R. Wulan and S. Fitriyah, “Model EOQ Fuzzy untuk Barang Terdeteriorasi dengan Kondisi Shortage Diperbolehkan,” pp. 1-8, 2014.
B. Bishi, J. Behera, and S. K. Sahu, “Two-Warehouse Inventory Model for Non-Instantaneous Deteriorating Items with Exponential Demand Rate,” International Journal of Applied Engineering Research, vol. 14, no. 2, pp. 495-515, 2019.
N. H. Shah, S. Pareek, and I. Sangal, “EOQ in Fuzzy Environment and Trade Credit,” International Journal of Industrial Engineering Computations, vol. 3, pp. 133-144, 2012, doi: 10.5267/J.IJIEC.2011.07.001.
DOI: http://dx.doi.org/10.24036/unpjomath.v9i1.15653