Model Matematika Rantai Makanan Mangsa-Pemangsa Tiga Spesies dengan Adanya Ketakutan pada Mangsa dan Predator Perantara

Nadila Arsya -
Muhammad Subhan -

Abstract


A three-species prey-predator interaction is an interaction involving three species, namely the prey species, the intermediate predator and the top predator. The presence of predators can cause fear in their prey. This research aims to determine the local stability analysis of the mathematical model of the prey-prey food chain for three species in the presence of fear of intermediate prey and predators. This research is also equipped with numerical simulations that show the effects of fear on prey and intermediate predators. Based on the analysis that has been carried out, four fixed points have been obtained with their respective stability. Numerical simulations from the model show that when there is no fear of intermediate prey and predators, the population of each species shows irregular oscillations, whereas in the presence of fear of intermediate prey and predators the population stabilizes towards a fixed point . However, if the level of fear is too high for prey or intermediate predators, it will cause the population of top predators to become extinct.

Full Text:

PDF

References


B. Sahoo and S. Poria, “The chaos and control of a food chain model supplying additional food to top-predator,” Chaos, Solitons and Fractals, vol. 58, pp. 52–64, 2014, doi: 10.1016/j.chaos.2013.11.008.

SUMARTO, S dan KONERI R, “Ekologi Hewan,” B. Sect., p. 19, 2017.

D. Miswar and I. L. Nugraheni, “Ekologi Pendidikan,” Univ. Lampung, vol. 5, no. 3, pp. 248–253, 2019.

D. Maknun, Ekologi: Populasi, Komunitas, Ekosistem, Mewujudkan Kampus Hijau, Asri, Islami Dan Ilmiah. Cirebon: Nurjati Press, 2017.

N. Suwanto, “ANALISIS DINAMIK MODEL PREDATOR-PREY TIGA SPESIES.”

R. N. P. Putri, W. Windarto, and C. Alfiniyah, “Analisis Kestabilan Model Predator-Prey dengan Adanya Faktor Tempat Persembunyian Menggunakan Fungsi Respon Holling Tipe III,” Contemp. Math. Appl., vol. 3, no. 2, p. 88, 2021, doi: 10.20473/conmatha.v3i2.30493.

T. Levi, “Wolves-coyotes-foxes : A cascade among carnivores Wolves – coyotes – foxes : a cascade among carnivores,” Ecology, vol. 93, no. APRIL 2012, pp. 921–929, 2015, [Online]. Available: http://klamathconservation.org/docs/blogdocs/leviwilmers2012.pdf

G. Finizio, N.;Ladas, Persamaan Differensial Biasa Dengan Penerapan Modern, 2nd ed. Jakarta: Erlangga, 1988.

G. T. Skalski and J. F. Gilliam, “Functional responses with predator interference: Viable alternatives to the Holling type II model,” Ecology, vol. 82, no. 11, pp. 3083–3092, 2001, doi: 10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2.

K. L. Ryall and L. Fahrig, “Response of predators to loss and fragmentation of prey habitat: A review of theory,” Ecology, vol. 87, no. 5, pp. 1086–1093, 2006, doi: 10.1890/0012-9658(2006)87[1086:ROPTLA]2.0.CO;2.

Didiharyono, “Analisis Kestabilan dan Keuntungan Maksimum Model Predator-Prey Fungsi Respon Tipe Holling III dengan Usaha Pemanenan,” J. Masagena, vol. 11, no. 2, pp. 314–326, 2016.

O. J. Schmitz, A. P. Beckerman, and K. M. O’Brien, “Behaviorally Mediated Trophic Cascades: Effects of Predation Risk on Food Web Interactions,” Ecology, vol. 78, no. 5, p. 1388, 1997, doi: 10.2307/2266134.

K. L. Pangle, S. D. Peacor, and O. E. Johannsson, “Large nonlethal effects of an invasive invertebrate predator on zooplankton population growth rate,” Ecology, vol. 88, no. 2, pp. 402–412, 2007, doi: 10.1890/06-0768.

X. Wang, L. Zanette, and X. Zou, “Modelling the fear effect in predator–prey interactions,” J. Math. Biol., vol. 73, no. 5, pp. 1179–1204, 2016, doi: 10.1007/s00285-016-0989-1.

E. Society, “Chaos in a Three-Species Food Chain Author ( s ): Alan Hastings and Thomas Powell Reviewed work ( s ): Published by : Ecological Society of America Stable URL : http://www.jstor.org/stable/1940591 . CHAOS IN A THREE-SPECIES FOOD CHAIN ’,” vol. 72, no. 3, pp. 896–903, 2013.

Kocak and Hole, “Dokumen.Tips_Hale-Kocak-Dynamics-and-Bifurcations.Pdf.”




DOI: http://dx.doi.org/10.24036/unpjomath.v9i2.15359