Aplikasi Machine Learning dalam Prediksi Harga Saham Jakarta Islamic Index (JII) Menggunakan Metode Support Vector Regression

Lala Faiza -
Dina Agustina -

Abstract


Investment is the process of allocating money into an asset with the goal of generating future profits. Investing in stocks generates higher returns but has a high risk as well. Therefore, the fluctuations in stock prices are very important so that investors need to analyze stock prices when making an investment. This study aims to apply machine learning in stock price prediction using the Support Vector Regression (SVR) method. JII stock data for the months of December 2021 to November 2022 were used in this study. Predicting stock prices is one of the processes in this research's data analysis processusing the Support Vector Regression (SVR) and then using RMSE to evaluate the model. The conclusions of this study indicate that SVR can be implemented as a method for predicting stock prices with the smallestRMSE values for ANTM, BRIS, and BRPT shares of0.0004.

Full Text:

PDF

References


​A. Aziz, Manajemen Investasi Syariah. Bandung: CV. Alfabeta, 2010.

​J. J. Sambelay, P. V Rate, and D. N. Baramuli, “Analisis Pengaruh Profitabilitas Terhadap Harga Saham Pada Perusahaan Yang Terdaftar di LQ45 Periode 2012-2016,” 753 J. EMBA, vol. 5, no. 2, pp. 753–761, 2017.

​E. Tandelilin, PORTOFOLIO dan INVESTASI Teori dan Aplikasi, First edit. Yogyakarta: PENERBIT KANISIUS, 2010.

​S. Zuliarni, “PENGARUH KINERJA KEUANGAN TERHADAP HARGA SAHAM PADA PERUSAHAAN MINING AND MINING SERVICE DI BURSA EFEK INDONESIA”.

​P. D. Dr. Kusuma, Machine Learning Teori, Program, dan Studi Kasus. 2020.

​M. Wauters and M. Vanhoucke, “Support Vector Machine Regression for project control forecasting,” Autom. Constr., vol. 47, pp. 92–106, 2014, doi: 10.1016/j.autcon.2014.07.014.

​Y. Ma, R. Han, and W. Wang, “Portfolio optimization with return prediction using deep learning and machine learning,” Expert Syst. Appl., vol. 165, no. June 2020, p. 113973, 2021, doi: 10.1016/j.eswa.2020.113973.

​R. Amanda, H. Yasin, and A. Prahutama, “ANALISIS SUPPORT VECTOR REGRESSION (SVR) DALAM MEMPREDIKSI KURS RUPIAH TERHADAP DOLAR AMERIKA SERIKAT,” J. Gaussian, vol. 3, pp. 849–857, 2014, [Online]. Available: http://ejournal-s1.undip.ac.id/index.php/gaussian

​R. Isnaeni, Sudarmin, and Z. Rais, “ANALISIS SUPPORT VECTOR REGRESSION ( SVR ) DENGAN KERNEL RADIAL BASIS FUNCTION ( RBF ) UNTUK MEMPREDIKSI LAJU INFLASI DI INDONESIA,” vol. 4, no. 1, pp. 30–38, 2022, doi: 10.35580/variansiunm13.

​H. Yasin, A. Prahutama, and T. wahyu Utami, “PREDIKSI HARGA SAHAM MENGGUNAKAN SUPPORT VECTOR REGRESSION DENGAN ALGORITMA GRID SEARCH,” Media Stat., vol. 7, pp. 29–35, 2014.

​P. Meesad and R. I. Rasel, “Predicting stock market price using support vector regression,” 2013 Int. Conf. Informatics, Electron. Vis., pp. 1–6, 2013.

​Z. Puspaningtyas, Prediksi Risiko Investasi Saham. Yogyakarta: Griya Pandiva, 2015. [Online]. Available: https://books.google.co.id/books?id=hVnHDwAAQBAJ&lpg=PA3&dq=investasi saham di indonesia&lr&pg=PR4#v=onepage&q=investasi saham di indonesia&f=false

​I. Fahmi and Y. LHadi, Teori Portofolio dan Analisis Investasi. Bandung: Alfabeta, 2009.

​D. A. Tofani, “ANALISIS PERBEDAAN RATA-RATA RETURN SAHAM SEBELUM DAN SESUDAH HARI LIBUR NASIONAL (Studi Pada Saham Jakarta Islamic Index Tahun 2016),” 2017. [Online]. Available: http://repository.unpas.ac.id/id/eprint/27616

​M. F. Wulandari, “INVESTASI FINANCIAL ASSETS DAN REAL ASSETS DALAM KONSEP EKONOMI ISLAM,” 2017. [Online]. Available: http://repository.iainbengkulu.ac.id/id/eprint/489

​B. E. Indonesia, “IDX Syariah JII,” 2021.

​V. N. Vapnik, Statistical Learning Theory. New York, 1998.

​G. H. Saputra, A. H. Wigena, and B. Sartono, “PENGGUNAAN SUPPORT VECTOR REGRESSION DALAM PEMODELAN INDEKS SAHAM SYARIAH INDONESIA DENGAN ALGORITME GRID SEARCH ∗ 1 Pendahuluan,” pp. 148–160, 2019.

​M. P. Kusuma and A. Kudus, “Penerapan Metode Support Vector Regression (SVR) pada Data Survival KPR PT. Bank ABC, Tbk.,” Bandung Conf. Ser. Stat., vol. 2, no. 2, pp. 167–172, 2022, doi: 10.29313/bcss.v2i2.3614.

​R. Amanda, “ANALISIS SUPPORT VECTOR REGRESSION (SVR) DALAM MEMPREDIKSI KURS RUPIAH TERHADAP DOLLAR AMERIKA SERIKAT,” J. Gaussian, vol. 3, pp. 849–858, 2014, doi: https://doi.org/10.14710/j.gauss.3.4.849-858.

​A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Stat. Comput., vol. 14, no. 3, pp. 199–222, 2004, doi: 10.1023/B:STCO.0000035301.49549.88.

​C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A Practical Guide to Support Vector Classification,” 2016, [Online]. Available: https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

​F. Ratih Puspita, Jondri, and D. Saepudin, “Prediksi Financial Time Series Menggunakan Independent Component Analysis dan Support Vector Regression Studi Kasus : IHSG dan JII,” vol. 2, no. e-Proceeding of Engineering, p. 3608, 2015, [Online]. Available: https://core.ac.uk/download/pdf/299901639.pdf

​W. Wang and Y. Lu, “Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model,” IOP Conf. Ser. Mater. Sci. Eng., vol. 324, no. 1, 2018, doi: 10.1088/1757-899X/324/1/012049.

​A. M. Mood, F. A. Graybill, and D. C. Boes, Introduction to the Theory of Statistics. McGraw-Hill Science/Engineering/Math, 1974.




DOI: http://dx.doi.org/10.24036/unpjomath.v8i3.15110