Modifikasi Metode Fletcher-Reeves Untuk Penyelesaian Masalah Optimasi Tak Linier Tanpa Kendala

Fikri Salmi -
Muhammad Subhan -

Abstract


In nonlinear unconstrained optimization problems, methods involving the gradient of a function are used, allowing the function’s value to increase or decrease at the fastest rate. One of the gradient-based methods is the Conjugate Gradient method, which has been extensively modified, with one of the well-known variants being the Fletcher-Reeves method. However, in many cases, the application of these methods doesn’t always achieve the correct descent direction, affecting the speed and convergence of the method, so that modifications arise due to these deficiencies. The purpose of this study is to examine the process of forming the formula of a modified Fletcher-Reeves method, develop the algorithm, and analyze the global convergence. The results of numerical simulation tests show that by selecting the appropriate  value the modified Fletcher-Reeves method converges to the global minimum solution and can find it faster than the Fletcher-Reeves method.

Full Text:

PDF

References


M. Subhan, Hand-Out Mata Kuliah Analisis Numerik, Padang: Universitas Negeri Padang, 2021.

R. Munir, Metode Numerik Edisi Revisi, Bandung: Informatika ITB, 2006.

M. Elida, "Metode Gradient Conjugate untuk Menyelesaikan Masalah Optimasi Nonlinier Tanpa Kendala," Universitas Negeri Padang, 2015.

R. Fletcher and C. M. Reeves, "Function Minimization by conjugate gradients," Comput J, vol. 7, pp. 149-154, 1964.

J. H. Mathews and K. Fink, International Edition Numerical Methods using Matlab Fourth Edition, USA: Pearson Education International, 2004.

L. E. Scales, Introduction to Non-Linear Optimization, London: Macmillan, 1985.

J. Nocedal and S. J. Wright, Numerical Optimization Second Edition, New York: Springer, 2006.

I. N. Bronshtein, K. Semendyayev, G. Musiol and H. Muehlig, Handbook of Mathematics, Berlin: Springer, 2007.

N. Andrei, "An Unconstrained Optimization Test Function Collection," Advanced Modelling And Optimization, vol. 10, no. Number 1, pp. 147-161, 2008.

S. S. Rao, Engineering Optimization Theory and Practice, Coral Gables, Florida: University of Miami, 2009.

W. Sun and Y.-X. Yuan, Optimization Theory and Methods: Nonlinear Programming, New York: Springer, 2010.

S. Butenko and P. M. Pardalos, Numerical Methods And Optimization: An Introduction, Boca Raton: CRC Press, 2014.

L. Grippo and M. Sciandrone, Introduction to Methods for Nonlinear Optimization, Italy: Springer, 2023.

R. Farida, "Perbandingan Metode Conjugate Gradient Menggunakan Koefisien Update Conjugate Direction Fletcher-Reeves dan Dai-Liao Untuk Menyelesaikan Masalah Optimasi," Universitar Brawijaya, 2010.

H. Wasi and M. A. K. Shiker, "A Modified of FR Method to Solve Unconstrained Optimization," Journal of Physics: Conference Series, 2021.




DOI: http://dx.doi.org/10.24036/unpjomath.v9i1.15086