Metode Iterasi Orde Dua Trapesium untuk Menyelesaikan Persamaan Nonlinear
Abstract
Mathematical problems in determining the roots of nonlinear equations can be solved analytically and numerically. However, very complex nonlinear equations are difficult to solve analytically, so numerical methods are used. Trapezoid Second Order Iteration Method is a method that emerge because of the shortcomings of the Newton Raphson Method and The Secant Method. The purpose of this study is to examine the process of forming the formula for the Trapezoid Second Order Iteration Method, develop an algorithm and find its convergence. This type of research is basic research. The result of numerical simulation tests on several function whose approach point are at two peaks show that The Trapezoidal Second Order Iteration Method is faster than Newton Raphson Method.
Full Text:
PDFReferences
Munir, R. Metode Numerik Revisi Ketiga. Bandung: Informatika. 2003
Triadmodjo, B. Metode Numerik. Yogyakarta: Peta Offset. 1992
Syafii. Metode Numerik Algoritma dan Pemprograman Visual C++. Padang: Andalas University Press. 2014
Susila, I. N. Metode Numerik. Bandung: FMIPA ITB. 1992
Amang. BAB III: Penyelesaian Persamaan Non Linier. Diakses dari http;//lecturer.eepis-its.edu/~amang/pdf/ , tanggal 29 Oktober 2017.
Munir, R. Metode Numerik. Bandung: Infornatika. 2006
Kincaid, D., dan Cheney, E. W. Numerical Analysis: Mathematics Of Scientific Computing (Vol. 2). New York: American Mathematical Soc. 2009
Singh, M K. dan Sing, S.R., ‘’ A Six-Order Modification of Newto’s Method Solving Nonlinear Equations,’’ Internasional Jurnal Of Computation Cognition. Vol.9, No. 2, Jume 2011.
Kalhoro Zubair Ahmed, Umair K. Q., Asif A. S., Abdul R. N., ‘’Trapezoidal Second Order Iterated Method For Solving Nonlinear Problems,’’ USJICT (University Of Sindh Journal Of International And Communication Technology,Vol.2, pp. 111-114, 2018.
Sugiyono. Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Bandung: Alfabeta. 2018
Pringgar Rizaldy Fatha, Bambang Sujatmiko, ‘’ Penelitian Kepustakaan (Library Reseaech) Modul Pembelajaran BerbasiS Augmented Reality Pada Pembelajaran Siswa,’’ IT-Edu: Jurnal Information Technology and Education,5(01),2021
Putra, E.M., Subhan, M. dan Rizal, Y. Metode Tipe Newton Bebas Turunan untuk Menentukan Akar Persamaan Tak Linea. Journal Of Mathematics, Vol.4, No.2, 2019
Muanalifah, Ani, ‘’Pemanfaatan Software Matlab Dalam Pembelajaran Metode Numerik Pokok Bahasan Sistem Persamaan Linear Simulation,’’ Jurnal Phenomenon,Vol.1, No.1, 2013
H. Sismoro. Pengantar Logika Informatika Algoritma dan Pemprograman Komputer. Yogyakarta: Andi. 2005
Aprilla, Y dan Subhan, M. Metode Iterasi Prediktor Korektor Jarrat-Householder untuk Penentuan Akar Persamaan Non Linear. Journal Of Mathematics UNP, Vol.8, No.1,2023
DOI: http://dx.doi.org/10.24036/unpjomath.v8i3.15032