Penentuan Akar Persamaan Non Linier Menggunakan Metode Iterasi Tiga Langkah Orde Delapan
Abstract
In determining the roots of non-linear equations can be solved analytically and numerically. Non-linear equations that are difficult to solve analytically can be solved by approaching them with numerical methods, namely the Newton method, the Ostrowski method, and the Bawazir method. However, this method is still slow in obtaining its roots because of its small convergence order. The Eighth Order Three-Step Iteration Method was formed because of the shortcomings of the existing 0methods. 0The purpose of 0this study is to examine the0 process of forming the formula of the Eighth Order Three-Step Iteration Method, develop the algorithm, and analyze the order of convergence. 0This type of research is basic research0. From the0 research results, the algorithm is used in computer programs. 0The convergence0 order 0of 0the Three-Step0Iteration0Method is eight, so this method is faster than Newton's Method, Ostrowski's Method, and Bawazir's Method.
Full Text:
PDFReferences
Santoso, F.G.I. Analisis Perbandingan Metode Numerik dalam Menyelesaikan Persamaan-Persamaan Serentak. Jakarta: Gramedia, 2011
Singh, M.K dan Singh, S.R. A Six-Order Modification of Newton’s Method For Solving Nonlinear Equations. International Journal Of Computational Cognition.Vol. 9, No. 2, 2011
Munir, R. Metode Numerik Edisi Revisi. Bandung :Informatika. Munir, R, 2006.
Singh, M.K dan Singh, S.R. A Six-Order Modification of Newton’s Method For Solving Nonlinear Equations. International Journal Of Computational Cognition.Vol. 9, No. 2, 2011.
Nurazmi, Putra,S, dan Musraini,M. Famili Dari Metode Newton-Like dengan Orde Konvergensi Empat. JOM FMIPA Unri, Volume 1 No.2, 2014.
Nazeer, W., Naseem, A., Kang, S. M., & Kwun, Y. C. Generalized Newton Raphson’s Method Free From Second Derivative. Journal Nonlinear Sci. Appl, 9(1), 2823-2831, 2016.
F. Sains, U. I. N. Sultan, and S. Kasim, “Metode Iterasi Dua Langkah Satu Parameter Untuk Penyelesaian Persamaan Nonlinear,” no. November, pp. 627–632, 2018
Ostrowski. A,. M. Solution of equations in Euclidean and Banach spaces. Academic Press, 1973
Bawazir, H. M. Fifth and Eleventh-Order Iterative Methods for Roots of Nonlinear Equations. 17(2), 2020.
S. A. Djumadila and W. Wartono, “Modifikasi Metode Iterasi Dua Langkah dengan Satu Parameter,” Semin. Nas. Teknol. …, pp. 18–19, 2017, [Online]. Available: http://ejournal.uin-suska.ac.id/index.php/SNTIKI/article/view/3371.
Heister. T, G. Rebholz. L, dan Xue. F. Numerical Analysis : an Introduction. Berlin : Walter de Gruyter GmbH and Co KG, 2019.
O. Ababneh, “New Iterative Methods for Solving Nonlinear Equations and Their Basins of Attraction,” WSEAS Trans. Math., vol. 21, pp. 9–16, 2022, doi: 10.37394/23206.2022.21.2.
P. Sivakumar, K. Madhu, and J. Jayaraman, “Optimal eighth and sixteenth order iterative methods for solving nonlinear equation with basins of attraction,” Appl. Math. E-notes, vol. 21, pp. 320–343, 2021.
Rostami, M., dan Esmaeili. A Modification of Chebyshev-Halley Method Free from Second Derivatives for Nonlinear Equations. Caspian Journal of Mathematical Sciences (CJMS). Vol. 3, No. 1, hal. 133-140.22, 2014.
Sharma, J. R. Some Modified Newton’s Methods with Fourthorder Convergence”. Pelagia Research Library. Advances in Applied Science Research, Vol.2, No.1, hal. 240-247, 2011
DOI: http://dx.doi.org/10.24036/unpjomath.v8i4.14999