The Comparison of the Regula-Falsi Method and the Ridder Method in Determining Non Linear Equation Roots

Feby Melrosa -

Abstract


As the development of technology, there are many problems in mathematics that required a structured solutions, one of which is finding a solution to a non-linear equation called a root equation. This solution can be solved numerically when an analytical solution is difficult to find. Numerical methods that can be used to find roots of nonlinear equations include the Regula-Falsi method and the Ridder method.  The purpose of this research is compare the results in the form of root value comparison, the number of iterations and the error rate from the Regula Falsi method and the Ridder method. Based on the research findings, it can be concluded that the root values obtained from the Regula Falsi method and the Ridder method are the same. However, for some equations, the Ridder method is preferable and constantly gets fewer iterations compared to the Regula Falsi method.

Full Text:

PDF

References


V. Mandailina, S. Syaharuddin, D. Pramita, M. Ibrahim, and H. R. P. Negara, “Wikinson Polynomial: Accuracy Analysis Based on Numerical Methods of the Taylor Series Derivative,” Desimal J. Matimatika, vol. 3(2), no. 155–160, 2020, doi: https://doi.org/10.24042/djm.v3i2.6134.

S. Yutika, “KONVERGENSI MODIFIKASI VARIAN METODE CHEBYSHEV-HALLEY MENGGUNAKAN INTERPOLASI KUADRATIK,” UNIVERSITAS ISLAM NEGERI SULTAN SYARIF KASIM RIAU, 2014.

P. Batarius, “Perbandingan Metode Newton-Raphson Modifikasi dan Metode Secant Modifikasi dalam Penentuan Akar Persamaan,” 2018.

S. . Chapra and R. . Canale, Metode Numerik. Jakarta: Erlangga, 1991.

R. Munir, Metode Numerik. Bandung: Informatika, 2003.

Sahid, Pengantar Komputasi Numerik dengan Matlab. Yogyakarta: Andi Offset, 2004.

I. Mujtahidah, “Penentuan Akar Persamaan Taklinear dengan Menggunakan Metode Ridder,” Universitas Negeri Padang, 2015.

H. Laksono and R. Afrianita, Metode Numerik Dengan Matlab Akar-Akar Persamaan Non Linear. Andalas University Press, 2020.

J. Kiusalaas, Numerical Methods In Engineer with MATLAB. Surabaya, 2012.

J. Hernadi, Matematika Numerik dengan Implementasi MATLAB. Yogyakarta: Andi Offset, 2012.

P. Batarius, “Perbandingan Metode Brent dan Bisection dalam Penentuan Akar Ganda Persamaan Berbentuk Polinomial.,” 2021.

S. . Chapra and R. . Canale, Numerical Methods for Engineers. New York: McGraw-Hill, 2006.

H. Djojodiharjo, Metode Numerik. jakarta: PT. Gramedia Pustaka Utama, 2000.

W. Gautschi, Numerical Analysis. London: Birkhäuser, 2012.

Suarga, Komputasi Numerik Pemograman MATLAB untuk Metoda Numerik. Yogyakarta: Andi Offset, 2014.

I. N. Susila, Dasar-Dasar Metode Numerik. Bandung: FMIPA ITB, 1992.

S. S. . Vakkalagadda, “A Better Root Finding Method using False Position and Inverse Quadratic Interpolation Methods,” Int. Res. J. Eng. Technol., vol. 07(04), no. 4178–4180, 2020.




DOI: http://dx.doi.org/10.24036/unpjomath.v8i4.14931