ANALISIS KEMISKINAN EKSTREM PROVINSI BENGKULU MENGGUNAKAN METODE GEOGRAPHICALLY WEIGHTED REGRESSION (GWR) DENGAN PEMBOBOT ADAPTIVE GAUSSIAN KERNEL DAN ADAPTIVE BI-SQUARE

Riki Wahyudi - Bengkulu University
Yulian Fauzi - Universitas Bengkulu
Jose Rizal - Universitas Bengkulu

Abstract


Extreme poverty is a condition of inability to fulfill basic needs, namely the need for food, clean drinking water, proper sanitation, health, shelter, education, and access to information which is not only limited to income, but also access to social services (United Nations, 1996).Geographically Weighted Regression (GWR) model is used in mapping extreme poverty of all level 2 regions in Bengkulu Province using Adaptive Gaussian Kernel and Adaptive Bi-Square weights as well as finding the best GWR model and analyzing the model against extreme poverty mapping of Bengkulu Province. The data used in this study is the March 2022 Susenas data. Of the 18 variables that allegedly affect extreme poverty, only 6 variables support the assumption of spatial heterogeneity in GWR modeling. Based on the selection of the best model, it is known that the GWR model with Adaptive Bisquare Kernel weighting is a suitable model for the percentage of extreme poor people in Bengkulu Province with the smallest AIC value

Full Text:

PDF

References


Badan Pusat Statistik (BPS) (2022). Data dan Informasi Kemiskinan Kabupaten/Kota di Indonesia. Jakarta: BPS

Brunsdon Ch, Fotheringham S, and Charlton M. 1996. Geographically Weighted Regression: A Method For Exploring Spatial Nonstationarity. Geogr. Anal. 28, 281-298.

Diantoro, Galuh (2015). Analisis Spasial Kemiskinan di Indonesia Tahun 2013 menggunakan Metode Geographically Weighted Regression (GWR) [Skripsi]. Jakarta: STIS

Dwinata, A. 2012. Model Regresi Logistik Terboboti Geografis (studi kasus :pemodelan kemiskinan di Provinsi Jawa Timur). Tesis. Institut Pertanian Bogor

Fotheringham, A.S.,C. Brunsdon, dan M. Charlton. (2002). Geographically Weighted Regression. Chichester, UK: John Wiley & Sons Ltd

Farida, Ira (2016). Model Geographically Weighted Regression (GWR) dengan pembobot kernel Bisquare. Bandung: UPI

Fatikhurrizqi. A, Kurniawan B.D (2020). Peran Bantuan Sosial dalam Pengentasan Kemiskinan Ekstrem di Jawa Timur Tahun 2020. Seminar Nasional Official Statistics 2022:1027-1036

Hartoyo, G dkk (2010). Modul Pelatihan Sistem Informasi Geografis (SIG) Tingkat Dasar. Bogor: Tropenbos International Indonesia Programme

Lutfiani, Nurul (2017). Geographically Weighted Regression (GWR) Dengan Fungsi Pembobot Kernel Gaussian dan Bi-Square [Skripsi]. Semarang: UNS.

Permai S.D, Tanty H, dan Rahayu, A. 2016. Geographically Weighted Regression Analysis for Human Development Index. Departement of Mathematics and Statistics, School of Computer Science, Bina Nusantara University, Jakarta. Published by the American Institute of Phisics

Putri A, Salamah M. 2013. Pemodelan Kasus Balita Gizi Buruk di Kabupaten Bojonegoro dengan Geographically Weighted Regression. FMIPA, Institut Teknologi Sepuluh Nopember (ITS). Jurnal Sains dan Seni Pomits Vol. 2, No.1

Rahmawati, R. dan Djuraidah, A. (2013). Analisis Geographically Weighted Regression (GWR) dengan Pembobot Kernel Gaussian untuk Data Kemiskinan. Prosiding Seminar Nasional Statistika. Semarang: Universitas Diponegoro

Saefuddin, A., N. A. Setiabudi, dan N. A. Achsani. (2011). On Comparisson between Ordinary Linear Regression and Geographically Weighted Regression: With Application to Indonesian Poverty Data. European Journal of Scientific Research, Vol. 57 No. 2 (2011), pp 275-285

United Nations. (1996). Konsep dan definisi Kemiskinan Ekstrem. Diakses pada tanggal 2 Desember 2022 melalui https://pendampingdesa.com/

Wang, C. 2016. The Impact of car ownership and public transport usage on cancer screening coverage: Empirical evidence using a spatial analysis in England. Journal of transport geography. University of London, page 15-22

Wheeler, DC, Paez, A. (2010). Regresi Berbobot Geografis. Dalam: Fischer, M., Getis, A. (eds) Handbook of Applied Spatial Analysis. Springer, Berlin, Heidelberg




DOI: http://dx.doi.org/10.24036/unpjomath.v8i2.14914