MODEL MATEMATIKA KETERGANTUNGAN MASYARAKAT TERHADAP MEDIA SOSIAL

Nanda Oktavia -
Media Rosha -

Abstract


The convenience presented by social media technology leads to dependence on its users. Social media dependence has a bad impact on humans and is very dangerous for its users. Thus it is necessary to analyze how the level of dependence of society on social media. The transmission of social media dependence occurs if there is interaction between communities. The study aims to determine the level of dependence of the community on social media. This research is stated ase basic research and uses literature studies. This research begins with identifying problems, formulating mathematical models, conducting stability analysis at the point and interpreting the mathematical model. Based on the results of the analysis, this point remains free and endemic to people's dependence on social media exists and will be asymptotic stable if it meets some of the conditions of the Routh-Hurwitz criteria. Based on the simulation results, the interaction and the number of people who recover can affect the spread of dependence on social media. The spread of people's dependence on social media will be reduced if the rate of recovery is increased.


Full Text:

PDF

References


Gunawan, Budi dan Barito Mulyo Ratmono. 2021. Medsos di Antara Dua Kutub. Jakarta: Rayyana Komunikasindo.

Sholeh, Asrorun Ni’am.(2020). Panduan Bermuamalah Melalui Media Sosial. Jakarta: Erlangga.

W, Akram dan R, Kumar. (2017). A Study on Positive and Negative Effect od Social Media on Society. International Journal of Computer Science and Engineering. Volume 5, issue 10, Hal. 351 – 352.

Triastuti, Endah, dkk. (2017). Kajian Dampak Penggunaan Media Sosial Bagi Anak dan Remaja. Jakarta: PUSKAKOM.

Awaludin, Yanto. (2013). Pengertian Peran. Http://cintaorganisasi.com.

Meksianis, Zadrak Makridakis. (2018). Pemodelan Matematika Dinamika Populasi Dan Penyebaran Penyakit Teori. DEEPUBLISH (Grup Penerbitan CV BUDI UTAMA).

Rustan, Nur Khaerati. (2020). Model Matematika SIR Sebagai Solusi Kecanduan Penggunaan Media Sosial. 126 - 138. Vol. 3.

Ramanda, Riska. (200). Studi Kepustakaan Mengenai Landasan Teori Body Image Bagi Perkembangan Remaja. 120 – 135. Vol. 5.

Pagalay, U. (2009). Mathematical Modelling. Malang: UIN Press.

Leni D. (2012). Kestabilan Titik Equilibrium Model SIR (Susceptible, Infected, Recovered) Penyakit Fatal Dengan Migrasi. Skripsi. Fakultas Sains Dan Teknologi. Universitas Islam Negeri Sultan Syarif Kasim Riau: Pekanbaru.

Leleury, Z. A., dkk. (2017). Analisis Sistem Dinamik Dan Kendali Optimal Pada Penyebaran Populasi Anjing Rabies Di Kota Ambon. 116 – 123.

Brauer, Fred, dkk. (2012). Mathematical Model in Biology, Mathematical Biosiences Suberies. Springer.

Perko, Lawrence. (2001). Differential Equationand Dynamical System: Third Edition. New York.

Anton, H & Rorres, C. (2004). Aljabar Linear Elementer Versi Aplikasi Edisi 8 Jilid 1. Jakarta: Erlangga.

Olsder, G. J., & Woude, J. W. (1998). Mathematical System Theory. Delft University Press.




DOI: http://dx.doi.org/10.24036/unpjomath.v8i4.14908