Klasifikasi Masyarakat Penerima BPNT Program Sembako 2021 di Kelurahan Tiakar dengan Mengunakan Metode KNN Classifier

Annisa Nufus -
Helma Helma -

Abstract


At the time of the implementation of the food program in the Tiakar Sub-District, there was no information available on the criteria that would make the head of a family eligible to be a recipient of assistance, even though this was very important so that the government's goal of fulfilling the need for nutritious food could be felt by those who really needed it. The purpose of this study was to classify the heads of families in Tiakar Subdistrict as eligible or not eligible to receive staple foods using the K-Nearest Neighbor method. This study uses interview data conducted with the heads of families in the Tiakar Village. The data analysis step is to divide the data into training data and test data by 80%:20%, determine the number of nearest neighbours, calculate the dissimilarity distance and choose a class, calculate the level of accuracy using the confusion matrix and then choose the optimal K. Based on the results of the study, it was found that the K value that was good to use in the classification of family heads in Tiakar Subdistrict was K=3 because it had an accuracy percentage of 95%.

Full Text:

PDF

References


Kemenkeu RI Kalnwil DJPb Prov Kalltim. 2020. Indeks Malnfalalt Progralm Sembalko.http://djpb.kemenkeu.go.id/indeks-malnfalalt-progralm sembalko.

Pralsetyowalti, E. 2017. Daltal Mining Pengelompokkaln Daltal untuk Informalsi daln Evallualsi. Dutal Medial Publishing, Jalwal Timur.

Budimaln, I. M. daln R. Ralmaldinal. 2015. Peneralpaln Fungsi Daltal Mining Klalsifikalsi untuk Prediksi Malsal Studi Malhalsiswal Tepalt Walktu paldal Sistem Informalsi Alkaldemik Pergurualn Tinggi. JUPITER (Jurnall Penelitialn Ilmu daln Teknologi Komputer).7(1):39-50.

Salri, Y.Al. daln S. Aldinugroho. 2018. Implementalsi Daltal Mining Menggunalkaln Wekal. UB Press, Mallalng.

Rismialti, F.Al.D. daln M. Alry. 2019. Ukuraln Alkuralsi Klalsifikalsi Penyalkit Mesotheliomal Menggunalkaln Allgoritmal K-Nealrest Neighbor daln Balckwalrd Eliminaltion. Jurnall Salins daln Teknologi Informalsi.5(1): 2527-9114.

Indriyalnto, Al. 2021. Allgoritmal K-Nealrest Neighbor untuk Prediksi Nalsalbalh Alsuralnsi. NEM, Google LLC.

Ralhcmaldalni, E.V., F. P. Syalfriall daln H. H. Nisal. 2020. Allgoritmal C4.5 daln K-Nealrest Neighbors (KNN) untuk Memetalkaln Maltalkulialh daln Keterlalmbaltaln Kelulusaln Malhalsiswal.Krealtif Industri Nusalntalral, Balndung.

Lestari, M.E.I. 2015. Penerapan algoritma klasifikasi Nearest Neighbor (KNN) untuk mendeteksi penyakit jantung. Faktor Exacta. 7(4): 366-371

Palryudi, I. 2019. Whalt Alffects K Vallue Selection In K-Nealrest Neighbor.Internaltionall Journall Of Scientific alnd Technology Resealrch. 8(7).

Visal, S., dkk. 2011. Confusion maltrix-balsed fealture selection. MAlICS.710:120-127

Devita, R. N., H. W. Herwanto dan A. P. Wibawa. 2018. Perbandingan Kinerja Metode Naive Bayes Dan K-Nearest Neighbor Untuk Klasifikasi Artikel Berbahasa Indonesia.JTIIK (Jurnal Teknologi Informasi dan Ilmu Komputer). 5(4):427-434.

Ramadhani, M. dan D. H. Murti. 2018. Klasifikasi Ikan Menggunakan Oriented Fast and Rotated Brief (Orb) Dan K-Nearest Neighbor (Knn).JUTI J.Ilm. Teknol. Inf.16(2): 8-115.

Indrialti daln R. Alchmald. 2016. Sentiment Alnallysis For Review Mobile Alpplicaltions Using Neighbor Method Weighted K-Nealrest Neighbor (Nwknn). Journall of Environmentall Engineering alnd Sustalinalble Technology. 3(1): 23-32.

Suliziall, L.M. daln Al. Faluzaln. 2020. Compalring Nalive Balyes, K-Nealrest Neighbor, Alnd Neurall Network Clalssificaltion Methods Of Sealt Loald

ulc, Z., M. Maltejkal daln J. Prochzkal. 2016. Modificaltions of the Gower similalrity coefficient. In 19th Conference of Alpplicaltions of Malthemaltics alnd Staltistics in Economics-(AlMSE 2016).




DOI: http://dx.doi.org/10.24036/unpjomath.v8i2.14233