Model Matematika Pengaruh Lingkungan Terhadap Dinamika Jumlah Populasi Pejudi
Abstract
Abstract – The article discussed mathematical model of the environmental influences to dynamics of gambler population. This research was started with forming mathematical model of the environmental influences to dynamics of gambler population in non-linear differential equations system. Based on analysis model, there are two types of equilibrium point that are free equilibrium point of gambler and endemic equilibrium point. Existence and stability of the equilibrium points are determined by the basic reproduction number. By analyzing the model, obtained the stability of each equilibrium points.
Keywords – mathematical model, gambler, equilibrium, stability, basic reproductive number
Full Text:
PDFReferences
Blyuss KB, Kyrichko YN. 2005. On a Basic Model of a Two-disease Epidemic. New York: Elsevier applied Mathematics and computation.
Cain, John W., dan Reynold, Angela M. Ordinary and Partial Differential Equation: An Introduction to Dynamical System:Virginia Commonwealth University
Carole, Wade and Carol, Tavis. 2002. Psychology. Jakarta: Erlangga.
Davison, Gerald C., Neale, John M. and Kring, Ann M. 2006. Psikologi Abnormal. Jakarta: P.T Raja Grafindo Persada.
Johnson, Kohler. 2006. Elementary Differential Equations with Boundary Value Problems. New York: Greg Tobin.
Wahyudi Rozi. 2016. Model Matematika Pengaruh Lingkungan Terhadap Dinamika Jumlah Populasi Pejudi. Padang: UNP.
Widowati dan Sutimin. 2007. Buku Ajaran Pemodelan Matematika. Semarang: Universitas Diponegoro.
DOI: http://dx.doi.org/10.24036/unpjomath.v6i2.11569