Penentuan Akar Persamaan Tak Linier Menggunakan Metode Prediktor-Korektor Halley

Khairil Amri - Jurusan Matematika Universitas Negeri Padang
Minora Nasution - Jurusan Matematika Universitas Negeri Padang
Riry Sriningsih - Jurusan Matematika Universitas Negeri Padang

Abstract


Abstract-Nonlinear equation which is difficult to solve by analysis, but it can be solved using approach of variety of  numerical methods, for instance Newton-Raphson and Halley Methods.  However, the methods are not guaranteed to be convergent. Predictor Corrector Halley's method is one of the method that appear from the advantages and disadvantages of Newton-Raphson and Method of Halley. This method uses the Newton-Raphson Method as predictor and Halley's Method as corrector. It has a higher order and more efficient from Newton-Raphson and Halley methods. The advantage of this method has a higher convergence that has sixth-order convergence so that the step of the iteration is fewer. Next,an algorithm of this method is used to determine the root approximations of nonlinear equations.

Key Words-Non Linear Equations, Newton Method, Halley Method, Prediktor Corector Halley Method, Algorithm.

Full Text:

PDF

References


Conte, Samuel D. 1992. Dasar-Dasar Analisis Numerik. Jakarta: Erlangga.

Spanos, Aris. 1986. Statistical Foundations of Econometric Modelling. New York : Cambidge University Press

Inayat, Noor Khalida & Muhammad Aslam Noor. 2007. “Predictor-Corrector Halley Method for Nonlinear Equations.” Jurnal Applied Mathematics And Computation. 1587-1591

Amri, Khairil. “Menentukan Akar Persamaan Tak Linier dengan Menggunakan Metode Prediktor Korektor Halley”. Skripsi. Universitas Negeri Padang, Padang Indonesia, Juli, 2016.

Susila, I Nyoman. 1992. Dasar-Dasar Metode Numerik. Bandung: FMIP




DOI: http://dx.doi.org/10.24036/unpjomath.v6i2.11558