Model Matematika Penyebaran Penyakit Herpes Genital dengan Vaksinasi
Abstract
Abstract — Genital herpes is an infectious disease that can be transmitted and caused by Herpes Simplex Virus type 2 (HSV-2). According to WHO, genital herpes caused by HSV-2 is a global issue and it is estimated that 491 million people in the world are living with HSV-2 infection in 2016. Health observers are looking for solutions to the spread of genital herpes by developing prophylactic protection vaccines. In this research, a mathematical model of the spread of genital herpes with vaccination will be sought. The purpose of this study is to learn how to use vaccination against the spread of genital herpes. This study is a basic study using descriptive method. This method is done by analyzing theories relating to the problem. The study began by determining the variables, parameters, and assumptions that related to the spread of genital herpes with vaccination. The results of the analysis show that high rates of disease transmission can lead to diseas outbreak. In addition, increasing the precentage of successful vaccines can reduce the spread of genital herpes so that outbreaks not occur.
Keywords — mathematics model, genital herpes, vaccination.
Full Text:
PDFReferences
Parker, James N. 2002. The Official Patient’s Sourcebook on
Genital Herpes. San Diego: ICON Health Publications.
Podder, Chandra Nath. 2013. Dynamics of Herpes Simplex Virus
Type 2 in a Periodic Environment. Bangladesh: Department of
Mathematics, University of Dhaka.
Rahmawati, Chitra Diana. 2017. Perilaku Pencegahan Seks
Pranikah pada Remaja SMA. Surabaya: Fakultas Kesehatan
Masyarakat, Universitas Airlangga.
Xu, X., Zhang, Y., & Li, Q. (2019). Characteristic of Herpes
Simplex Virus Infection and Pathogenesis Suggest a Strategy for
Vaccine Development. Rev Med Virol. 2019;29:e2054.
doi:10.1002/rmv.2054
Standberry, Lawrence R. (2002). Glycoprotein D-Adjuvant
Vaccine to Prevent Genital Herpes. N Engl J Med. Vol.347 No.21
Lekone, P.E., & B.F. Finkenstadt. (2006). Statistical Inference in
a Stochastic Epidemic SEIR Model with Control Intervention:
Ebola as a Case Study. Biometrics, 62 : 1170-1177.
Widia, Lani., Subhan, M., & Rosha, M. (2018). Model
Matematika Zakat dalam Pengurangan Kemiskinan. UNP Journal
of Mathematics. Vol.1 No. 2. Padang: Universitas Negeri Padang.
Masli, Aziza., & Rosha, M. 2020. Model Matematika Penyebaran
Penyakit Herpes Genital dengan Vaksinasi. Padang: Universitas
Negeri Padang.
Arum Bati, Suhita. 2018. Pemodelan Penyebaran Penyakit
Herpes Genital Melibatkan Waktu Tunda. Yogyakarta: UNY
DOI: http://dx.doi.org/10.24036/unpjomath.v5i4.11119