UNPjoMath Vol. 3 No 3 September 2020 ISSN: 977 235516589 Page 87-93

Model Matematika Pengaruh Pemberian *Gadget* Terhadap Anak Usia Dini

Nofrita Ulfah^{#1}, Media Rosha^{*2}

*Student of Mathematics Department University Negeri Padang, Indonesia *Lecturer of Mathematics Department University Negeri Padang, Indonesia

¹nofritaulfah96@gmail.com
²mediarosha mat@fmipa.ac.id

Abstract — Gadgets are sophisticated technology that many people are interested in including early childhood. Parents who deliberately introduce and give gadgets to children without supervision make children addicted to their gadgets. This has led to an increase in cases of gadget addiction in early childhood. The purpose of this research is to form a mathematical model of the effect of giving gadgets to early childhood. This research is basic research. The theoretical method will be used to analyze the theories used in forming a mathematical model of the effect of gadgets on early childhood. Based on the analysis results obtained two fixed points, namely a fixed point free from gadget influence and a fixed point pendemik. The high level of influence of giving gadgets to early childhood causes the population of children to become increasingly addicted to gadgets.

Keywords — gadgets, early childhood, gadget addiction.

Abstrak — Gadget merupakan teknologi canggih yang banyak diminati kalangan masyarakat termasuk kalangan anak usia dini. Orang tua yang sengaja memperkenalkan dan memberikan gadget kepada anak tanpa adanya pengawasan membuat anak menjadi kecanduan dengan gadgetnya. Hal ini membuat terjadinya peningkatan kasus kecanduan gadget pada anak usia dini. Tujuan penelitian ini yaitu membentuk model matematika pengaruh pemberian gadget terhadap anak usia dini. Penelitian ini adalah penelitian dasar. Metode teoritis akan digunakan untuk menganalisis teori-teori yang digunakan dalam membentuk model matematika pengaruh gadget terhadap anak usia dini. Berdasarkan hasil analisis diperoleh dua titik tetap yaitu titik tetap bebas pengaruh gadget dan titik tetap endemik. Tingginya tingkat pengaruh pemberian gadget kepada anak usia dini mengakibatkan populasi anak kecanduan gadget semakin banyak.

Kata kunci — gadget, anak usia dini, kecanduan gadget.

PENDAHULUAN

Gadget merupakan suatu perangkat elektronik yang memiliki tujuan dan fungsi dalam membantu pekerjaan manusia [1]. Penggunaan Gadget bukan saja dari kalangan remaja, dewasa atau lanjut usia tetapi sudah memasuki kalangan anak usia dini. Anak usia dini menurut Undang-undang Republik Indonesia Nomor 20 tahun 2003 tentang Sistem Pendidikan Nasional pada Pasal 1 ayat 14 yang menyatakan pendidikan anak usia dini adalah pendidikan yang diperuntukkan bagi anak sejak lahir sampai usia 6 tahun.

Pengenalan *gadget* pada anak usia dini perlu perhatian khusus. Hal ini dapat saja membawa dampak berbahaya bagi anak. Tanpa ada pengawasan dalam penggunaan *gadget* pada anak akan berdampak anak menjadi kecanduan dengan *gadget*.

Sebuah survei yang dilakukan kepada 350 orang tua di Philadelphia menemukan tiga perempat anak-anaknya telah diberikan tablet, smartphone, atau iPod mereka kepada anak usia 4 tahun dan menggunakannya tanpa pengawasan. Survei lainnya yang dilakukan oleh Common Sense Media, pada tahun 2013 terdapat 72% anak-anak 8 tahun atau lebih muda menggunakan perangkat seluler dibandingkan pada tahun 2011 hanya 38 %. Sepertiga orang tua dari anak berusia 3-4 tahun mengatakan anak-anaknya suka menggunakan lebih dari satu perangkat pada saat yang sama. 70% melaporkan mengizinkan anak-anaknya 6 bulan sampai 4 tahun untuk bermain dengan perangkat seluler sementara orang tua mengerjakan pekerjaan rumah. 65% melaporkan menggunakan gadget untuk menenangkan anak di depan umum, dan orang tua melaporkan bahwa anak-anaknya menggunakan perangkat untuk menonton video dan hiburan pasif lainnya [2].

Tingginya tingkat penggunaan *gadget* pada anak usia dini dan tanpa adanya pengawasan orang tua dapat mengakibatkan anak menjadi kecanduan dengan *gadget*. Hal ini diperjelas oleh Direktur RSJ Jabar Elly Marliyani yang mengungkapkan bahwa masalah kecanduan *gadget* tidak hanya dialami oleh anak usia minimal 15 tahun

September 2020 Page 87-93

UNPjoMath Vol. 3 No 3 ISSN: 977 235516589

tetapi sudah memasuki anak usia 5 tahun [3]. Menurut penelitian Ristica mengungkapkan orang tua sudah mengenalkan *gadget* saat anak berumur 2 tahun, dan pada saat anak berumur 4 tahun sudah menunjukkan tandatanda kecanduannya pada *gadget*. Hal ini di sebabkan karena orang tua memberikan *gadget* tanpa adanya pengawasan dalam penggunaannya [4].

Gadget tidak sepenuhnya berdampak buruk bagi penggunanya. Dampak positif yang dirasakan pengguna dalam menggunakan gadget dengan baik adalah bertambahnya ilmu pengetahuan, bagi anak usia dini salah satu dampak positif yang dirasakan berupa bertambahnya kosakata pada anak. Hal ini memperlihatkan bahwa gadget tidak sepenunhnya berdampak negatif. Apabila anak sudah menjadi kecanduan dengan gadget, langkah orang tua untuk mengatasinya adalah mengalihkannya ke permainan tradisional, menemani anak dalam bermain dan memberikan anak dengan lingkungan yang tidak memperioritaskan gadget.

Perkembangan ilmu pengetahuan di bidang matematika memberikan peran penting dalam membantu mengatasi persoalan pemberian *gadget* pada anak usia dini. Peran tersebut berupa model matematika. Dengan memodelkan masalah yang ada, diharapkan dapat memberikan solusi yang dapat ditempuh dengan memanfaatkan suatu persamaan matematika [5].

Adanya tingkat pemberian *gadget* yang tinggi maka dapat memunculkan variabel dan parameter serta akan dianalisis dan mengkaji lebih jauh faktor-faktor yang dapat dikontrol untuk mengurangi penggunaan *gadget* pada anak usia dini. Serta akan dianalisis dititik manakah pengaruh pemberian *gadget* terhadap anak usia dini yang mengakibatkan angka kecanduan *gadget* ini akan stabil sehingga permasalahan ini dapat dimodelkan ke dalam bentuk matematika guna menggambarkan kondisi yang nyata pada permasalahan tersebut [6].

Tujuan dari penelitian ini adalah membentuk model matematika pengaruh pemberian *gadget* terhadap anak usia dini, menganalisis model yang dibentuk dan menginterpretasikan hasil analisis dari model yang telah diperoleh.

METODE

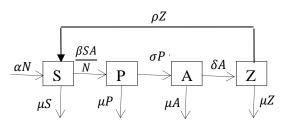
Penelitian ini adalah penelitian dasar. Metode yang digunakan adalah metode deskriptif dengan mengumpulkan teori pendukung serta mengaitkan teoriteori yang diperoleh pada permasalahan yang dibahas.

Langkah kerja yang dilakukan dalam penelitian ini adalah meninjau masalah yang dihadapi dengan mengumpulkan dan mengaitkan teori-teori yang relevan dengan masalah, menentukan asumsi, variabel dan parameter yang dapat membantu dalam membentuk dan menganalisis model matematika pengaruh pemberian gadget terhadap anak usia dini, membentuk model matematika, menganalisis model matematika pengaruh pemberian gadget terhadap anak usia dini dan menginterpretasikan hasil analisis dari model yang telah diperoleh.

HASIL DAN PEMBAHASAN

A. Pembentukan Model

Model matematika pengaruh pemberian *gadget* pada anak usia dini, jumlah populasinya dibagi kedalam empat kelompok, yaitu: kelompok individu yang rentan terhadap pengaruh *gadget* (S), kelompok individu pengguna *gadget* (P), kelompok individu kecanduan *gadget* (A), dan kelompok individu yang diterapi (Z). Dengan demikian jumlah total populasi adalah N=S+P+A+Z.


Asumsi yang digunakan dalam membentuk model adalah sebagai berikut:

- 1. Individu mulai mengenal dan dapat menggunakan *gadget* pada usia 3 tahun.
- 2. Populasi tertutup, artinya tidak ada individu yang melalukan imigrasi dan emigrasi.
- 3. Adanya kematian alami pada masing-masing populasi dan adanya individu yang berumur lebih dari 6 tahun keluar di tiap masing-masing populasi.
- 4. Kematian anak usia dini karena kecanduan *gadget* jarang terjadi.
- Individu yang kecanduan dengan gadget ditandai dengan individu yang lupa waktu, suka marah, menarik diri dari pergaulan, suka menunda pekerjaan, jam tidur yang kurang.
- 6. Individu yang diberikan rentan terhadap *gadget* biasanya tidak langsung menampakkan perilaku kecanduan terhadap *gadget*.
- 7. Individu yang rentan dapat terpengaruh dengan anak yang kecanduan terhadap *gadget*.
- 8. Individu yang kecanduan *gadget* dapat diobati.
- 9. Individu yang telah diobati tidak menutup kemungkinan untuk kembali rentan terhadap pengaruh *gadget* disebabkan *gadget* tidak sepenuhnya berdampak negatif.

Parameter yang digunakan dalam pembentukan model adalah:

- 1. Tingkat bertambahnya individu yang rentan terhadap pengaruh gadget yang dimulai dari usia 3 tahun (α)
- 2. Tingkat pengaruh gadget pada individu yang rentan terhadap individu kecanduan gadget (β)
- 3. Tingkat kematian (μ) dimana individu yang meninggal secara alami dan individu yang melewati usia 6 tahun berada di masing-masing populasi.
- 4. Tingkat keinginan individu yang terpengaruh dengan individu yang kecanduan $gadget(\sigma)$
- 5. Tingkat individu yang telah diterapi tidak menutup kemungkinan untuk menjadi individu yang rentan terhadap pengaruh $gadget(\rho)$
- 6. Tingkat pengobatan individu yang kecanduan gadget (δ)

Berdasarkan asumsi-asumsi yang diberikan, maka dapat disusun diagram skematik model pengaruh pemberian *gadget* terhadap anak usia dini, seperti pada gambar. 1

Gambar. 1 Diagram Skematik Model Pengaruh Pemberian Gadget Pada Anak Usia Dini

Berdasarkan gambar. 1 dapat diformulasikan model matematika pengaruh pemberian gadget terhadap anak usia dini sebagai berikut:

$$\frac{dS}{dt} = \alpha N - \mu S - \frac{\beta SA}{N} + \rho Z$$

$$\frac{dP}{dt} = \frac{\beta SA}{N} - (\mu + \sigma)P$$

$$\frac{dA}{dt} = \sigma P - (\mu + \delta)A$$

$$\frac{dZ}{dt} = \delta A - (\mu + \rho)Z$$

Misalkan

$$B_1 = \mu + \sigma$$

$$B_2 = \mu + \delta$$

$$B_3 = \mu + \rho$$

$$B_3 = \mu + \rho$$

Sehingga diperoleh persamaan menjadi:

$$\frac{dS}{dt} = \alpha N - \mu S - \frac{\beta SA}{N} + \rho Z$$

$$\frac{dP}{dt} = \frac{\beta SA}{N} - B_1 P$$

$$\frac{dA}{dt} = \sigma P - B_2 A$$

$$\frac{dZ}{dt} = \delta A - B_3 Z$$
(1)

B. Analisis Model Matematika Pengaruh Pemberian Gadget terhadap Anak Usia Dini

Dalam analisis model pengaruh pemberian gadget terhadap anak usia dini akan dicari titik tetap bebas, titik tetap endemik, bilangan reproduksi dasar, analisis dari titik tetap bebas dan endemik, dan melakukan simulasi dari analisis model matematika tersebut.

1) Titik Tetap Model $e_0 = (S, 0,0,0)$

Dari analisis sistem (1) diperoleh titik tetap yaitu: $e_0 = \left(\frac{\alpha}{\mu}N, 0, 0, 0\right)$

$$e_0 = \left(\frac{\alpha}{\mu}N, 0, 0, 0\right)$$

2) Titik Tetap Endemik $e_* = (S^*, P^*, A^*, Z^*)$

Titik tetap endemik pengaruh perilaku kecanduan gadget dapat diartikan bahwa terdapat sejumlah individu yang terpengaruh perilaku kecanduan gadget pada populasi. Secara matematis dapat diekpresikan dengan: S > 0, E > 0, I > 0, dan R > 0. Sehingga diperoleh titik tetap endemik dari pengaruh perilaku kecanduan gadget adalah:

$$\begin{split} S^* &= \frac{B_1 B_2 N}{\sigma \beta} \\ P^* &= \frac{B_2 B_3 (\sigma \beta \alpha - \mu B_1 B_2) N}{\sigma (\beta B_1 B_2 B_3 - \sigma \beta \rho \delta)} \\ A^* &= \frac{(\sigma \beta \alpha - \mu B_1 B_2) B_3 N}{\beta B_1 B_2 B_3 - \sigma \beta \rho \delta} \\ Z^* &= \frac{\delta (\sigma \beta \alpha - \mu B_1 B_2) B_3 N}{B_3 (\beta B_1 B_2 B_3 - \sigma \beta \rho \delta)} \end{split}$$

3) Bilangan Reproduksi Dasar (R_0)

Dalam masalah pengaruh gadget, R₀ dapat dinyatakan sebagai rat-rata banyaknya kasus kedua yang dihasilkan oleh individu yang kecanduan gadget, pada saat ia berinteraksi dalam sebuah populasi yang rentan terhadp gadget. Bilangan reproduksi dasar dapat ditentukan menggunakan metode next generation matrix. Matriks pada metode ini dibentuk oleh sub-sub populasi pada kelas exposed dan infected. Berdasarkan model pengaruh pemberian gadget akan dibahas mengenai bilangan reproduksi dasar menggunakan kelompok exposed dan infected pada persamaan (2) dan (3). Sehingga diperoleh R_0 adalah:

$$R_0 = -1 + \sqrt{\frac{\alpha\beta\sigma}{\mu B_1 B_2}}$$

Jadi, jika nilai $R_0 > 1$ maka

$$\sqrt{\frac{\alpha\beta S}{NB_1B_2}} > 2$$

Jika nilai $R_0 < 1$ maka

$$1 < \sqrt{\frac{\alpha\beta S}{NB_1B_2}} < 2$$

4) Kestabilan Model Matematika Pengaruh Pemberian Gadget Terhadap Anak Usia Dini

Analisis Kestabilan titik tetap dapat ditentukan dengan cara menentukan nilai eigen dari matriks Jacobian pada sistem (1) yang diperoleh sebagai berikut:

$$J = \begin{bmatrix} -\mu - \frac{\beta A}{N} & 0 & -\frac{\beta S}{N} & \rho \\ \frac{\beta A}{N} & -B_1 & \frac{\beta S}{N} & 0 \\ 0 & \sigma & -B_2 & 0 \\ 0 & 0 & \delta & -B_3 \end{bmatrix}$$

Karena terdapat dua jenis titik tetap, maka analisis kestabilan dilakukan pada kedua titik tetap tersebut.

a. Kestabilan Titik Tetap Bebas dari Pengaruh Gadget $e_0 = \left(\frac{\alpha}{\mu}N, 0, 0, 0, 0\right)$

Titik tetap dikatakan stabil jika semua nilai eigen dari matriks Jacobian pada titik tetap bebas dari pengaruh perilaku kecanduan gadget bernilai negatif. Titik tetap bebas dari pengaruh perilaku kecanduan *gadget* adalah:

$$J = \begin{bmatrix} -\mu & 0 & -\frac{\beta\alpha}{\mu} & \rho \\ 0 & -B_1 & \frac{\beta\alpha}{\mu} & 0 \\ 0 & \sigma & -B_2 & 0 \\ 0 & 0 & \delta & -B_3 \end{bmatrix}$$

Diperoleh persamaan karakteristik dari matriks $J(e_0)$

$$(\lambda + \mu)(\lambda + B_3)\left((\lambda + B_1)(\lambda + B_2) - \frac{\alpha\beta\sigma}{\mu}\right) = 0$$

Persamaan karakteristik yang kedua yaitu:

$$(\lambda + B_1)(\lambda + B_2) - \frac{\alpha \beta \sigma}{\mu} = 0$$

atau

$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$

dengan

$$\lambda_{3,4} = \frac{-(B_1 + B_2) + \sqrt{(B_1 + B_2)^2 - 4\left(B_1B_2 - \frac{\alpha\beta\sigma}{\mu}\right)}}{2}$$

$$\lambda_3$$
 dan λ_4 akan bernilai negatif jika
$$\frac{-(B_1+B_2)+\sqrt{(B_1+B_2)^2-4\left(B_1B_2-\frac{\alpha\beta\sigma}{\mu}\right)}}{2}<0$$

Hal ini berarti bahwa titik tetap bebas dari pengaruh perilaku kecanduan gadget stabil. Begitu juga sebaliknya.

b. Kestabilan Titik Tetap Endemik Dari Pengaruh $Gagget e_* = (S^*, P^*, A^*, Z^*)$

Berdasarkan analisis titik tetap endemik pengaruh perilaku kecanduan gadget diperoleh sebagai berikut:

$$e_* = (S^*, P^*, A^*, Z^*)$$

Matriks Jacobi dati titik tetap endemik pengaruh perilaku kecanduan gadget sebagai berikut:

$$J(e_*) = \begin{bmatrix} -\mu - \frac{(\sigma\beta\alpha - \mu B_1 B_2)B_3}{B_1 B_2 B_3 - \sigma\rho\delta} & 0 & -\frac{B_1 B_2}{\sigma} & \rho \\ \frac{(\sigma\beta\alpha - \mu B_1 B_2)B_3}{B_1 B_2 B_3 - \sigma\rho\delta} & -B_1 & \frac{B_1 B_2}{\sigma} & 0 \\ 0 & \sigma & -B_2 & 0 \\ 0 & 0 & \delta & -B_3 \end{bmatrix}$$

Sehingga diperoleh persamaan karakteristiknya adalah

$$\begin{split} &\lambda^{4} + \lambda^{3} \Bigg[\mu + B_{1}B_{2} + B_{3} + \frac{(\sigma\beta\alpha - \mu B_{1}B_{2})B_{3}}{B_{1}B_{2}B_{3} - \sigma\rho\delta} \Bigg] + \\ &\lambda^{2} \Bigg[\Bigg[B_{1}B_{2}B_{3} + \frac{(\sigma\beta\alpha - \mu B_{1}B_{2})B_{3}}{B_{1}B_{2}B_{3} - \sigma\rho\delta} \Bigg] B_{1}B_{2} + B_{3} \Bigg] + \mu \Big(B_{1}B_{2} + B_{3} \Big) \Bigg] \\ &+ \lambda \Bigg[\mu B_{1}B_{2}B_{3} + \Bigg(\frac{(\sigma\beta\alpha - \mu B_{1}B_{2})B_{3}}{B_{1}B_{2}B_{3} - \sigma\rho\delta} \Bigg) B_{1}B_{2}B_{3} + \Bigg(\frac{(\sigma\beta\alpha - \mu B_{1}B_{2})B_{3}}{B_{1}B_{2}B_{3} - \sigma\rho\delta} \Bigg) B_{1}B_{2} \Bigg] \\ &+ \Bigg[\Bigg(\frac{(\sigma\beta\alpha - \mu B_{1}B_{2})B_{3}}{B_{1}B_{2}B_{3} - \sigma\rho\delta} \Bigg) B_{1}B_{2}B_{3} - \Bigg(\frac{(\sigma\beta\alpha - \mu B_{1}B_{2})B_{3}}{B_{1}B_{2}B_{3} - \sigma\rho\delta} \Bigg) \sigma\rho\delta \Bigg] = 0 \\ &+ dimana: \end{split}$$

Diperoleh persamaan karakteristik dari matriks
$$J(e_0)$$
 adalah:
$$(\lambda + \mu)(\lambda + B_3) \left((\lambda + B_1)(\lambda + B_2) - \frac{\alpha\beta\sigma}{\mu} \right) = 0$$

$$(\lambda + \mu) = 0, \text{ karena } \mu > 0 \text{ dan } \lambda_1 = -\mu, \text{ maka } \lambda_1 < 0$$

$$(\lambda + B_3) = 0, \text{ karena } D_3 > 0 \text{ dan } \lambda_2 = -B_3, \text{ maka } \lambda_2 < 0$$
 Persamaan karakteristik yang kedua yaitu:
$$(\lambda + B_1)(\lambda + B_2) - \frac{\alpha\beta\sigma}{\mu} = 0$$
 atau
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + B_1B_2 - \frac{\alpha\beta\sigma}{\mu} = 0$$
 and
$$\lambda^2 + (B_1 + B_2)\lambda + (B_1 + B_2$$

Dengan menggunakan kriteria Routh-Hurwitz untuk k =4 diperoleh

 $a_1 > 0$, $a_3 > 0$, $a_4 > 0$, $a_1 a_2 a_3 > a_3^2 + a_1^2 a_4$ karena koefisien bernilai positif maka nilai eigen dari persamaan karakteristik diatas bernilai negatif atau mempunyai bagian real bernilai negatif. Dapat disimpulkan bahwa titik tetap endemik pengaruh gadget

Berdasarkan hasil analisis dapat disimpulkan bahwa titik tetap e_0 selalu ada, sedangkan titik tetap e_* , tidak selalu ada. Titik tetap e_* ada jika memenuhi $\sqrt{\frac{\sigma\beta S}{NB_1B_2}} > 2$.

Ada dua kasus yang mungkin terjadi pada sistem dinamika penyebaran perilaku kecanduan gadget adalah sebagai berikut:

a) Kasus I

Pada saat keberadaan titik e* tidak terpenuhi maka sistem dinamika penyebaran perilaku kecanduan gadget hanya memiliki satu titik tetap yaitu titik tetap e_0 yang akan bersifat stabil.

b) Kasus II

Pada saat keberadaan titik e, terpenuhi maka sistem dinamika penyebaran perilaku kecanduan gadget memiliki dua titik tetap yaitu titik tetap e_0 dan e_* . Disini titik tetap e_0 bersifat tidak stabil dan titik tetap e_* bersifat

September 2020 Page 87-93

stabil. Pada kasus ini perilaku kecanduan gadget tidak akan musnah dalam jangka waktu yang lama.

5) Simulasi Model Matematika Pengaruh Pemberian Gadget terhadap Anank Usia Dini

Simulasi dilakukan dengan menggunakan software maple 18 dengan memberikan nilai untuk masing-masing parameter. Simulasi numerik pada model memberikan gambaran yang jelas.

a. Simulasi Model Matematika Dengan Titik Tetap

Akan Disimulasikan dengan keadaan tidak ada individu yang terpengaruh terhadap gadget sehingga yang digunakan dapat dilihat pada tabel I.

TABEL I NILAI-NILAI PARAMETER MODEL UNTUK TITIK TETAP

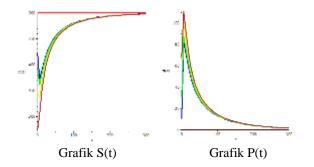
Parameter	Nilai
α	0.55
β	0.17
μ	0.11
σ	0.07
ρ	0.121
δ	0.15

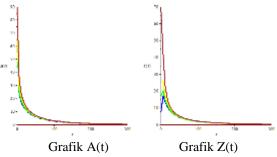
Dari nilai parameter di atas terlebih dahulu dihitung nilai R_0 yang diperoleh:

$$R_0 = 0.127549343$$

 $R_0 = 0.127549343$ Diperoleh $R_0 < 1$. Sehingga diperoleh titik tetap bebas pengaruh gadget yaitu $e_0 = (500,0,0,0)$. Dalam simulasi titik tetap bebas dari pengaruh gadget digunakan lima nilai awal adalah:

$$S(0)=500, P(0)=0, A(0)=0, Z(0)=0$$


$$S(0)=423$$
, $P(0)=10$, $A(0)=60$, $Z(0)=7$


$$S(0)=393$$
, $P(0)=30$, $A(0)=60$, $Z(0)=17$

$$S(0)=343, P(0)=65, A(0)=65, Z(0)=27$$

$$S(0)=273$$
, $P(0)=67$, $A(0)=90$, $Z(0)=70$

Berdasarkan nilai parameter dan nilai awal di atas diperoleh grafik dari masing-masing kelompok terhadap waktu t adalah

Gambar 3. Trayektori di sekitar Titik Bebas dari Pengaruh Gadget

Keterangan:

Kurva berwarna merah adalah titik bebas dari pengaruh pengaruh pemberian gadget.

kurva berwarna biru adalah kurva dengan keadaan nilai

$$S(0)=423$$
, $P(0)=10$, $A(0)=60$, $Z(0)=7$

Kurva bewarna hijau adalah kurva dengan keadaan nilai awal

$$S(0)=393$$
, $P(0)=30$, $A(0)=60$, $Z(0)=17$

Kurva bewarna kuning adalah kurva dengan keadaan nilai awal

$$S(0)=343, P(0)=65, A(0)=65, Z(0)=27$$

dan kurva bewarna coklat adalag kurva dengan keadaan nilai awal

$$S(0) = 273$$
, $P(0) = 67$, $A(0) = 90$, $Z(0) = 70$

Berdasarkan gambar 2 diatas kurva biru merah mewakili titik bebas dari pengaruh gadget, sedangkan kurva biru, hijau, kuning dan coklat adalah yang menentukan stabil atau tidaknya titik bebas pengaruh gadget pada masing-masing grafik dengan diberikan kondisi awal yang berbeda.

Dapat dilihat bahwa titik tetap $e_0 = \left(\frac{\alpha}{\mu}N, 0, 0, 0\right)$ merupakan titik tetap yang stabil karena trayektori (kurva biru, hijau, kuning, dan coklat) dari masing-masing grafik mendekati titik tetap bebas dari pengaruh bergerak perilaku gadget yang ditunjukkan oleh kurva merah. Berdasarkan grafik S(t) terhadap t, kurva biru, hijau, kuning, dan coklat bergerak mendekati kurva merah dengan nilai awal S(0) = 500. Kemudian dari grafik P(t), A(t), dan Z(t) terhadap t, kurva biru, hijau, kuning, dan coklat juga bergerak mendekati kurva merah dengan nilai awalnya adalah P(0) = 0, A(0) = 0, dan Z(0) = 0. Grafik-grafik tersebut menunjukkan bahawa tidak terjadi peningkatan pengaruh gadget.

b. Simulasi Model Matematika Dengan Titik Tetap Endemik dari Pengaruh Pemberian Gadget terhadap Anak Usia Dini

Akan disimulasikan untuk keadaan dimana ada individu yang terpengaruh dengan perilaku kecanduan gadget sehingga diasumsikan parameter sesuai pada

UNPjoMath Vol. 3 No 3 ISSN: 977 235516589

TABEL II NILAI-NILAI PARAMETER MODEL TITIK ENDEMIK

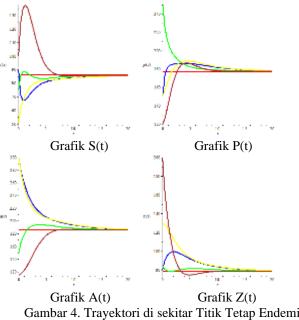
E. H. I (IE. H. I I HU H) E I E I I I I O E E E I I I I I I E I (E E I I I	
Parameter	Nilai
α	0.95
β	0.70
μ	0.18
σ	0.45
ρ	0.41
δ	0.25

Dari parameter diatas terlebih dahulu dihitung nilai R_0 yang di:

$$R_0 = 1.477287005$$

Diperoleh $R_0 > 1$. Kemudian dihitung nilai titik tetap endemik dari pengaruh gadget yaitu e_0 (86,177,186,79). Dalam simulasi titik tetap endemik dari pengaruh perilaku kecanduan gadget digunakan lima nilai awal adalah:

S(0)=86, P(0)=177, A(0)=186, Z(0)=79


S(0)=90, P(0)=150, A(0)=300, Z(0)=80

S(0)=73, P(0)=250, A(0)=150, Z(0)=85

S(0)=50, P(0)=150, A(0)=300, Z(0)=130

S(0)=100, P(0)=120, A(0)=115, Z(0)=200

Berdasarkan nilai parameter dan nilai awal di atas diperoleh grafik dari masing-masing kelompok terhadap t adalah:

Gambar 4. Trayektori di sekitar Titik Tetap Endemik dari Pengaruh Gadget

Keterangan:

Kurva merah adalah kurva titik tetap endemik dari pengaruh perilaku kecanduan gadget.

Kurva biru adalah kurva dengan nilai awal sebagai berikut: S(0) = 90, P(0) = 150, A(0) = 300, Z(0) = 80

Kurva hijau adalah kurva dengan nilai awal sebagai berikut:

$$S(0)=73$$
, $P(0)=250$, $A(0)=150$, $Z(0)=85$

Kurva kuning adalah kurva dengan nilai awal sebagai berikut:

S(0)=50, P(0)=150, A(0)=300, Z(0)=130

Kurva coklat adalah kurva dengan nilai awal sebagai berikut:

$$S(0)=100, P(0)=120, A(0)=115, Z(0)=200$$

Berdasarkan Gambar 4 di atas kurva merah mewakili titik tetap endemik dari pengaruh perilaku kecanduan terhadap gadget, sedangkan kurva biru, hijau, kuning, dan coklat terhadap kurva biru yang nanti akan menetukan stabil atau tidak pada titik tetap endemik dari pengaruh perilaku kecanduan gadget pada masing-masing grafik

Dapat dilihat bahwa titik tetap $e_* = (S^*, P^*, A^*, Z^*)$ merupakan titik tetap yang stabil asimtotik karena trayektori (kurva biru, hijau, kuning, dan coklat) dari masing-masing grafik bergerak mendekati titik tetap endemik dari pengaruh perilaku kecanduan terhadap gadget yang ditunjukkan oleh kurva merah. Berdasarkan grafik S(t) terhadap t, kurva biru, hijau, kuning, dan coklat bergerak mendekati kurva merah dengan nilai awal S(0) = 86. Kemudian dari grafik P(t), A(t), dan Z(t)terhadap t, kurva biru, hijau, kuning, dan coklat juga bergerak mendekati kurva merah dengan nilai awalnya adalah P(0) = 177, A(0) = 186, dan Z(0) = 79. Titik tetap $e_* = (S^*, P^*, A^*, Z^*)$ yang stabil dapat diartikan bahwa ketika terjadi penyebaran perilaku kecanduan gadget dalam suatu populasi maka jumlah untuk setiap kelompok akan kembali ke keadaan awal.

C. Interpretasi Model Matematika Pengaruh Pemberian Gadget terhadap Anak Usia Dini

Berdasarkan R₀ dapat dilihat faktor-faktor yang mempengaruhi terjadjinya epidemi dalam suatu populasi, yaitu laju penularan perilaku kecanudan gadget akibat adanya kontak dengan A dengan individu $S(\beta)$ dan laju perubahan dari kelas individu P menjadi kelas individu $I(\sigma)$.

$$R_0 = -1 + \sqrt{\frac{\alpha\beta\sigma}{\mu B_1 B_2}}$$

Berdasarkan persamaan diatas bahwa β dan σ berbanding lurus dengan R_0 . Hal ini berarti dengan mengontrol nilai β , yaitu mengontrol laju penularan perilaku kecanduan gadget akibat adanya kontak antara individu A dengan individu S dengan mengawasi pertemanan individu dan mengontrol agar individu juga tidak kecanduan dengan gadget. Mengontrol nilai σ yaitu laju perubahan dari kelas P menjadi kelas individu A dengan mengontrol dan membatasi waktu anak bermain gadget. Setelah β dan σ berkurang maka tingkat kecanduan gadget pada anak usia dini dapat berkurang.

SIMPULAN

Dari pembahasan yang telah dilakukan dapat disimpulkan bahwa jika pemberian gadget dilakukan dalam pengawasan dan rata-rata kontak antara individu kecanduan gadget dan rentan dapat dikontrol maka untuk UNPjoMath Vol. 3 No 3 September 2020 ISSN: 977 235516589 Page 87-93

kondisi yang stasioner endemik dalam suatu populasi tidak akan terjadi.

REFERENSI

- [1] Iswidharmanjaya, D., dan Agency, B. *Bila si Kecil Bermain Gadget*, Yogyakarta: Bisakimia.
- [2] Louis, C. S. (2015). Many Children Under 5 Are Left to Their Mobile Devices, Survey Finds. Diakses 10 Juli 2020, dari https://www.nytimes.com/2015/11/02/health/many-children-under-5-are-left-to-their-mobile-devices-survey-finds.html
- [3] Detiknews (2019). Duh! Gegara Kecanduan Gadget, Bocah 5 tahun di Jabar Alami Masalah Kejiwaan. Diakses 28 Juni 2020, dari https://news.detik.com/berita-jawa-barat/d-4741179/duh-gegarakecanduan-gadget-bocah-5-tahun-di-jabar-alami-masalah-kejiwaan
- [4] Ristica, O. D. 2019. Asuhan Kebidanan Pada Balita Yang Mengalami Kecenderungan Gadget Di Tk Sahira Pandau Jaya. Vol. 10. No. 2: 55-61.
- [5] Sukma, Y., Media, R., dan Arnellis. 2014. Model matematika Rantai Makanan Tiga Spesies. Vol. 1. No. 1.
- [6] Ulfah, N., dan Media, R. 2020. "Model Matematika Pengaruh Pemberian *Gadget* terhadap Anak Usia Dini", *Skripsi*, 78 Hal., Universitas Negeri Padang, Padang Indonesia, Agustus 2020.