The effect of composition MnFe2O4 / PANi nanocomposite on the microstructure that synthesized by spin coating method

Lucya Sinurat - Department of Physics, Universitas Negeri Padang, West Sumatera, Indonesia
Yenni Darvina - Department of Physics, Universitas Negeri Padang, West Sumatera, Indonesia
- Ramli - Department of Physics, Universitas Negeri Padang, West Sumatera, Indonesia
- Ratnawulan - Department of Physics, Universitas Negeri Padang, West Sumatera, Indonesia

Abstract


Manganese ferrite has the structure of MnFe2O4 which in the process of making it uses manganese mineral powder. Based on the MnFe2O4 testing is one material that is suitable for use as a composite by mixing other binders in it. Polyaniline (PANi) is a polymer that can be used as a binding material which is an attractive conductive polymer because it has unique properties and good thermal stability. This research was conducted by making three variations of the composition of MnFe2O4 / PANi namely 40%: 60%, 50%: 50%, and 60%: 40% made using the spin coating method. This research was conducted to investigate the effect of composition on the microstructure of the MnFe2O4 / PANi nanocomposite layer using the spin coating method. The microstructure to be investigated is the functional group of grain size and thickness of the nanocomposite layer. The tools used in this study are Fourier Transform Infrared (FTIR) used to obtain the functional groups of nanocomposite layers, X-ray Diffraction (XRD) is used to get the size of crystals and microstructure of crystals, and the Scanning Electron Microscope (SEM). Characterization and Scanning Electron Microscope (SEM) are used to obtain grain size and thickness of the nanocomposite layer. The results of the FTIR characterization are the functional groups of MnFe2O4 / PANi which produce absorption bands at wavenumbers 3214.85 cm-1, 3353.86 cm-1, and 3214.03 cm-1, which are O-H groups. The absorption band at wavenumbers 717.00 cm-1, 763.94 cm-1, and 747.31 cm-1 is the C-H group showing PANi. Absorption peaks that are below 1000 cm-1 that is at wavenumbers 874.78 cm-1, 924.18 cm-1, and 895.96 cm-1 show indications of Manganese Ferrit. The results of the XRD characterization were crystal size and microstrain, each of which had a crystal size composition of 49.90478417 nm, 45.29656118 nm, and 44.52213202, and then for the value of the microstrain, each variation was 0.116667149, 0.15983276, and 0.183718732. Then from SEM characterization results obtained grain size values of 0.445 μm, 0.426 μm, 0.318 μm, while the thickness obtained for each variation is 1.29 μm, 2.02 μm, and 2.20 μm. Based on the results of the study, the greater the addition of PANi composition given, the value of crystal size, grain size also increases while the value of microstructure and thickness decreases.


Full Text:

PDF

References


Erika, L.Y.Nasution, Astuti. 2012. Sintesis Nanokomposit PANi/Fe3O4 sebagai Penyerap Magnetik pada Gelombang Mikro.Jurnal Fisika Unand Vol 1, No.1, Oktober 2012.

Yunasfi. 2015. Analisis Sifat Listrik NanokompositFe0.5-C0.5. Kawasan Puspitek Serpong.Tangerang

Sulastri, S. 2010. Pengukuran Sebaran Lapisan Tipis Hasil Spin Coating dengan Metode Interferometrik. Surakarta : Universitas Sebelas Maret

Qomariyah, Pembuatan dan Karakterisasi Magnet Permanen Barrium FerriteMelalui Reaksi Padatan, Skripsi, Universitas Jenderal Soedirman, Purwokerto, 2012.

Yunasfi, Indri Racmawati, Mashadi, Wisnu Ari Adi dan Nurmaya Arofah. 2018. Analisis Fasa Sistem Mn(1-X)NdxFe2O4 Sebagai Kandidat Bahan Penyerap Gelombang Mikro. Jurnal Metalurgi, Vol. 33, No.2, E-ISSN 2443-3926; 55 – 60

N. Idayanti dan Dedi, Pembuatan Magnet Barium Heksaferrite Anisotrop, Jurnal Sains Materi Indonesia, vol.5, no.1, 2003, hal. 34-38

Rajab, La Agusu, dan La Ode Ngkoimani. 2017. Sintesis Nanopartikel Manganese Ferrite (MnFe2O4) Berbasis Pasir Besi dan Mangan Alam dengan Metode Reaksi Padatan

Mulller, p, dkk. 2006. Crystal Structure Refinement. International union of crystallografph: oxford science publications.

Uma, S.S., Sharma, R.N., dan Rashmi, S. 2014. Physical and Magnetic Properties

of Manganese Ferrite Nanoparticles. International Journal of Engineering Research and Applications. ISSN : 2248-9622, Vol. 4, Issue 8( Version 2), August 2014, pp.14-17

Taufiq, Ahmad. 2008. Sintesis Partikel Nano Fe3-xMnxO4 Berbasis Pasir Besi dan Karakterisasi Struktur serta Kemagnetannya. Tugas Akhir, Institut Teknologi Sepuluh Nopemeber. Surabaya.

Ghobadi, Misagh, Mahdi Gharabaghi, Hadi Abdollahi, Zohreh Boroumand, Marzieh Moradian. 2018. MnFe2O4-Graphene Oxide Magnetic Nanoparticles as High-performance Adsorbent for Rare Earth Elements: Synthesis, Isotherms, Kinetics, Thermodynamics and Desorption. Journal of Hazardous Material Vol 351. State University of New York

Ramli, Jonuarti, R., Hartono, A. 2017. Analisis Struktur Nano dari Lapisan Tipis cobalt Ferrite Yang Dipreparasi dengan Metode Sputtering. Eksakta Vol. 18 No. 1

Karokaro A, Suharpiyu, M Febri, Mujamillah ,E.Yulianti, S. Purwanto, Ridwan, Sudirman. 2002. Aplikasi Resin Poliester Dan Epoksi Dalam Pengembangan Rigid Bonded Agnet. Jurnal Sains Materi Indonesia Vol.3 No.2. Tangerang:Puslitbang Iptek Bahan (P3IB) BATAN

Handayani, A. 2007. Pengamatan Struktur mikro dengan Mikroskop Optik danScanning Electron Microscope (SEM-EDAX). Pusdiklat. Jakarta. 21 – 31 Mei 2007

Nugraheni.Rositawati Dwi. 2004. Pengaruh Doping Annealing Terhadap Konduktivitas Listrik Film Polianilin.SIGMA, Vol. 7, Juli 2004, pp. 117-122. ISSN:1410-5888.

Zeng, Shuang. Jun YANG, Xiaoyan QIU, Zhiyu LIANG, Yuanming ZHANG. 2016. Magnetically Recyclable MnFe2O4/polyaniline Composite with Enhanced Visible Light Photocatalytic Activity for Rhodamine B Degradation. China: Department of Chemistry, Jinan University.

Arsalani, Nasser, Amin Goljanian Tabrizi, Laleh Saleh Ghadimi. 2018. Novel PANI/MnFe2O4 Nanocomposite forLow-cost Supercapacitors with High Rate Capability. Journal of Materials Science: Materials in Electronics. Faculty of Chemistry, University of Tabriz: Iran

Jayalakshmi, M.2008. Simple Capasitor To Supercacitors. Int. J.Electrochem Sci. Vol 3. Hal 1196-1217.

Nursiti.,Wibowo, Ersita Raharjeng., Safitri, Ayu Wulan., Supriyono., Oktavian, Rama. 2018. Elektrolisis nanokomposit α-MnO2/C dan fabrikasinya untuk aplikasi superkapasitor. Jurnal Chemurgy. Vol.02 No.1.

M. Kooti dan A.N. Sadeh.2013. Synthesis And Characterization Of NiFe2O4 Magnetic Nanoparticles By Combustion Methode. Journal Of Materials Science And Technology Vol.29 Pp 34-38

Schecter,I.barzilai,I.L.,anda Bulatov,V. (1997). Online Remote Prediction of Gasoline Properties by Combined Optical Method, Ana.Chim.Acta, 339. Hal 193-199.

Thermo Nicolet. (2001). Introduction to FTIR Spectrometry. Thermo Nicolet Inc: Madison, USA.

Suryanarayana.C., Norton.M.(1998). X-Ray Diffraction : A Practical Approach, Plenum Press, New York.

Abdullah, M. dan Khairurrijal. 2010. Karakterisasi Nanomaterial Teori Penerapan dan Pengolahan Data. CV. Rezki Putra : Bandung.

Tristiana, Ade Liana. 2016. Struktur Mikro Dan Konduktivitas Listrik Keramik Cordierite Dengan Penambahan Magnesium Oksida (0, 10, 15 Wt %) Berbasis Silika Sekam Padi. Skripsi. Universitas lampung: Bandar lampung.

Helmita. 2018. Pengaruh Variasi Komposisi Nife2o4 Terhadap Sifat Magnetik Nanokomposit Nife2o4/Pani Yang Disintesis Dengan Metode Sol-Gel Spin Coating. FMIPA: UNP.

Darvina, Y., Rianto, D., Murti, F., Yulfriska, N., Ramli. 2017. Struktur Nano Partikel Oksida Besi dari Pasir Besi Pantai Tiram Sumatera Barat. Padang :Universitas Negeri Padang

Rianto, Debi. 2017. Analisis Struktur Kristal Dan Morfologi Lapisan Tipis Magnetit (Fe3o4) Berbahan Dasar Pasir Besi Alam Yang Ditumbuhkan Menggunakan Metode Spin Coating. FMIPA: UNP.

Rahmayeni, Stiadi, Y, Zulhadjri. 2013. Fotokatalis Komposit Magnetik TiO2-MnFe2O4. FMIPA: Universitas Andalas

Khairy M, M.E Gounda. 2014. Electrical and Optical Properties Of Nickel Ferrite/Polyaniline Nanocomposite. Journal Of Advance Reaserch. 62

Tang, N.J, W.Zhonga, H.Y.Jianga, X.L.Wua, W.Liua, Y.W.Dua. 2004. Nanostructured Magnetite (Fe3O4) Thin Films Prepared by Sol–gel Method. Nanjing University: China

Eken, A. E., Ozenbas, M. 2009. Characterization of nanostructured magnetite thin films produced by sol–gel processing. Journal Sol-Gel Sci Technol. 50:321–327

Susmita, Ria, Afdhal Muttaqin. 2013. Analisis Sifat Listrik Komposit Polianilin (PANi) Terhadap Penambahan Bottom Ash Sebagai Elektroda Superkapasitor. Jurnal Fisika Unand Vol. 2, No. 2. Padang: Universitas Andalas.

Jacintha, A. M. 2017. Synthesis and Comparative Studies of MnFe2O4 Nanoparticles with Different Natural Polymers by Sol-gel Method: Structural, Morphological, Optical, Magnetic, Catalytic and Biological Activity. Journal of Nanostructure in Chemistry. Varuvan Vadivelan Institute of Technology India

Nurzam, Fidzah Rudyah Putri., Ramli., Ratnawulan. 2019. Pengaruh komposisi CoFe2O4 terhadap Sifat Listrik Nanokomposit CoFe2O4/PANi yang disintetis dengan Metode Sol-Gel.Pillar Of Physics Vol 12 No 1

Sahanaya, Varadila., Ramli., Darvina, Yenni. 2018. Pengaruh Fraksi Konsentrasi Nanokomposit Fe3O4/PANI Dengan Metode Sol Gel Spin Coating Untuk Material Elektroda Baterai Lithium. Phillar Of Physics. Vol.11 No.2.




DOI: http://dx.doi.org/10.24036/9322171074