Low-Mass Star Evolution: Third Dredge-up and Overshooting in the Asymptotic Giant Branch (AGB) Phase

Bayu Nasrul - Hasanuddin University
Tasrief Surungan - Hasanuddin University

Abstract


Background. The Asymptotic Giant Branch (AGB) phase is a crucial stage in stellar evolution, marked by key nuclear fusion processes and structural changes. Important phenomena include Third dredge-up (TDU), where the shedding of outer layers characterizes material from the star's interior surfaces and mass loss. Aim. This study examines how overshooting parameter rates affect AGB evolution in a star with a mass of 1.85 M☉, focusing on TDU efficiency, its impact on the star's evolutionary path, and the effects of mass loss and structural changes. Methods. Stellar evolution simulations were performed using Module Experiment Stellar Astrophysics (MESA), exploring various overshooting parameters for the star models. Results. Increased overshooting improves mixing in convective zones, extends the AGB phase, and enhances TDU efficiency. As a result, the star evolves into a carbon-oxygen white dwarf (CO WD) with O-rich material at the core, influenced by mass loss and overshooting. Conclusion. Overshooting significantly affects AGB evolution in a 1.85 M☉ star by altering TDU behavior and mass loss patterns. These changes impact the star's final nuclear fusion composition, influencing its developmental path and ultimate characteristics.

References


S. Palmerini, “Basic Stellar Physics,” EPJ Web Conf., vol. 275, 2023, [Online]. Available: https://doi.org/10.1051/epjconf/202327501011

P. Padoan, T. Haugbølle, and Å. Nordlund, “A SIMPLE LAW OF STAR FORMATION,” Astrophys J Lett, vol. 759, no. 2, p. L27, 2012, doi: 10.1088/2041-8205/759/2/L27.

D. Kashino et al., “The Stellar Mass versus Stellar Metallicity Relation of Star-forming Galaxies at 1.6 ≤ z ≤ 3.0 and Implications for the Evolution of the α-enhancement,” Astrophys J, vol. 925, no. 1, p. 82, 2022, doi: 10.3847/1538-4357/ac399e.

Y. Gao et al., “Mass–Metallicity Relation and Fundamental Metallicity Relation of Metal-poor Star-forming Galaxies at 0.6 < Z < 0.9 from the eBOSS Survey,” Astrophys J, vol. 869, no. 1, p. 15, 2018, doi: 10.3847/1538-4357/aae9ef.

G. Bono et al., “Evolutionary and pulsation properties of Type II Cepheids,” A&A, vol. 644, 2020, [Online]. Available: https://doi.org/10.1051/0004-6361/202038191

F. LeBlanc, An Introduction to Stellar Astrophysics. Wiley, 2011. [Online]. Available: https://books.google.co.id/books?id=jAe4P3GIZRoC

J. W. den Hartogh et al., “The s process in rotating low-mass AGB stars,” A&A, vol. 629, 2019, [Online]. Available: https://doi.org/10.1051/0004-6361/201935476

M. M. Miller Bertolami, “New models for the evolution of post-asymptotic giant branch stars and central stars of planetary nebulae⋆,” A&A, vol. 588, Apr. 2016, [Online]. Available: https://doi.org/10.1051/0004-6361/201526577

M. Limongi, L. Roberti, A. Chieffi, and K. Nomoto, “Evolution and Final Fate of Solar Metallicity Stars in the Mass Range 7–15 M⊙. I. The Transition from Asymptotic Giant Branch to Super-AGB Stars, Electron Capture, and Core-collapse Supernova Progenitors,” Astrophys J Suppl Ser, vol. 270, no. 2, p. 29, 2024, doi: 10.3847/1538-4365/ad12c1.

M. Salaris, A. Weiss, L. P. Cassarà, L. Piovan, and C. Chiosi, “Detailed AGB evolutionary models and near-infrared colours of intermediate-age stellar populations: tests on star clusters,” A&A, vol. 565, May 2014, [Online]. Available: https://doi.org/10.1051/0004-6361/201423542

H. J. G. L. M. Lamers and E. M. Levesque, Understanding Stellar Evolution. IOP Publishing, 2017. doi: 10.1088/978-0-7503-1278-3.

S. Tosi, F. Dell’Agli, E. Huerta-Martinez, and P. Ventura, “Dust Formation in the Wind of AGB Stars—The Effects of Mass, Metallicity and Gas-Dust Drift,” Universe, vol. 8, no. 5, 2022, doi: 10.3390/universe8050270.

D. Kamath and H. Van Winckel, “Post-AGB Stars as Tracers of AGB Nucleosynthesis: An Update,” Universe, vol. 8, no. 4, 2022, doi: 10.3390/universe8040233.

A. J. Lee, “Carbon Stars as Standard Candles: An Empirical Test for the Reddening, Metallicity, and Age Sensitivity of the J-region Asymptotic Giant Branch (JAGB) Method,” Astrophys J, vol. 956, no. 1, p. 15, 2023, doi: 10.3847/1538-4357/acee69.

S. Höfner and B. Freytag, “Explaining the winds of AGB stars: Recent progress,” Proceedings of the International Astronomical Union, vol. 16, no. S366, pp. 165–172, 2020, doi: DOI: 10.1017/S1743921322000199.

H. J. Habing and H. Olofsson, “AGB Stars: History, Structure, and Characteristics,” in Asymptotic Giant Branch Stars, H. J. Habing and H. Olofsson, Eds., New York, NY: Springer New York, 2004, pp. 1–21. doi: 10.1007/978-1-4757-3876-6_1.

Yu. A. Fadeyev, “Evolution and Pulsations of Population I Post-AGB Stars,” Astronomy Letters, vol. 45, no. 8, pp. 521–527, 2019, doi: 10.1134/S1063773719080024.

J. C. Lattanzio, “The Third Dredge-Up: Status and Problems,” in Planetary Nebulae, R. Weinberger and A. Acker, Eds., Dordrecht: Springer Netherlands, 1993, pp. 235–242.

S. Uttenthaler, I. McDonald, K. Bernhard, S. Cristallo, and D. Gobrecht, “Interplay between pulsation, mass loss, and third dredge-up: More about Miras with and without technetium⋆,” A&A, vol. 622, 2019, [Online]. Available: https://doi.org/10.1051/0004-6361/201833794

F. Addari, P. Marigo, A. Bressan, G. Costa, K. Shepherd, and G. Volpato, “The Role of the Third Dredge-up and Mass Loss in Shaping the Initial–Final Mass Relation of White Dwarfs,” Astrophys J, vol. 964, no. 1, p. 51, 2024, doi: 10.3847/1538-4357/ad2067.

N. R. Rees, R. G. Izzard, and A. I. Karakas, “Thermal pulses with mesa: resolving the third dredge-up,” Mon Not R Astron Soc, vol. 527, no. 4, pp. 9643–9654, Feb. 2024, doi: 10.1093/mnras/stad3690.

E. Vassiliadis and P. Wood, “Evolution of Low- and Intermediate-Mass Stars to the End of the Asymptotic Giant Branch with Mass Loss,” Astrophys J, vol. 413, pp. 641–657, 1993, [Online]. Available: https://api.semanticscholar.org/CorpusID:123142673

S. Uttenthaler, I. McDonald, K. Bernhard, S. Cristallo, and D. Gobrecht, “Interplay between pulsation, mass loss, and third dredge-up: More about Miras with and without technetium⋆,” A&A, vol. 622, 2019, [Online]. Available: https://doi.org/10.1051/0004-6361/201833794

T. Constantino, S. Campbell, P. Gil-Pons, and J. Lattanzio, “ON THE NECESSITY OF COMPOSITION-DEPENDENT LOW-TEMPERATURE OPACITY IN MODELS OF METAL-POOR ASYMPTOTIC GIANT BRANCH STARS,” Astrophys J, vol. 784, no. 1, p. 56, 2014, doi: 10.1088/0004-637X/784/1/56.

S. Höfner and H. Olofsson, “Mass loss of stars on the asymptotic giant branch,” The Astronomy and Astrophysics Review, vol. 26, no. 1, p. 1, 2018, doi: 10.1007/s00159-017-0106-5.

E. Vassiliadis and P. R. Wood, “The Effect of Helium Shell Flashes on Asymptotic Giant Branch Evolution,” Publications of the Astronomical Society of Australia, vol. 10, pp. 30–32, 1992, [Online]. Available: https://api.semanticscholar.org/CorpusID:115479539

T. M. Lawlor, “A closer look at low-mass post-AGB late thermal pulses,” Mon Not R Astron Soc, vol. 519, no. 4, pp. 5373–5383, Mar. 2023, doi: 10.1093/mnras/stad042.

D. Kamath and H. Van Winckel, “Post-AGB Stars as Tracers of AGB Nucleosynthesis: An Update,” Universe, vol. 8, no. 4, 2022, doi: 10.3390/universe8040233.

A. J. Lee, “Carbon Stars as Standard Candles: An Empirical Test for the Reddening, Metallicity, and Age Sensitivity of the J-region Asymptotic Giant Branch (JAGB) Method,” Astrophys J, vol. 956, no. 1, p. 15, 2023, doi: 10.3847/1538-4357/acee69.




DOI: http://dx.doi.org/10.24036/17246171074