The use of Electronic Nose in Machine Learning-Based of Jengkol (Archidendron Pauchiflorum) Andkabauseeds (Archidendron Bubalinum) Authentication
Abstract
References
Rahman, I. N., Lelono, D., & Triyana, K. (2018). Klasifikasi Kakao Berbasis e-nose dengan Metode Neuro Fuzzy. IJEIS (Indonesian Journal of Electronics and Instrumentation Systems), 8(1), 49. https://doi.org/10.22146/ijeis.25512
Harmoko, H., Samitra, D., & Rozi, Z. F. (2020). Pemberdayaan masyarakat Desa Taba Remanik Kecamatan Selangit Kabupaten Musi Rawas melalui pelatihan pembuatan kerupuk kabau. J-ABDIPAMAS
(Jurnal Pengabdian Kepada Masyarakat), 4(1), 11. https://doi.org/10.30734/j-abdipamas.v4i1.896
Fadhlurrahman, I. (n.d.). Indonesia Produksi 157,16 Ribu Ton Jengkol pada 2023. Retrieved from
https://databoks.katadata.co.id/datapublish/2024/07/22/volume-produksi-jengkol-menurut- provinsi#:~:text=No.&text=Produksi jengkol Indonesia mencapai 157,%25) dalam 5 tahun terakhir.
Siburian, R. (2018). Methyl gallate from jiringa ( Archidendron jiringa ) and antioxidant activity, (January), 11–16. https://doi.org/10.22159/ajpcr.2018.v11i1.21637
Mainuddin, M., Kamal, M., Ahmed, A., Ferdous, G., Haque, H., & Khatun, A. (2021). Biocatalysis and Agricultural Biotechnology Chemical composition , bioactive compounds , antioxidants potential and mycotoxin of minor exotic archidendron pauciflorum fruit with the focus to Bangladesh. Biocatalysis and Agricultural Biotechnology, 34(June 2020), 102039. https://doi.org/10.1016/j.bcab.2021.102039
Serunting, M. A., Zulfikar, M. A., Setyorini, D. A., Rizki, W. O. S., Kurniawan, R., & Setiyanto, H. (2024). Facile sunlight-irradiation mediated green synthesis of highly stable silver nanoparticles using
Archidendron bubalinum pods extract for antibacterial activity application. Case Studies in Chemical and Environmental Engineering, 10(June), 100811. https://doi.org/10.1016/j.cscee.2024.100811
Komariah, D., & Hartana, A. (2016). Variasi Morfologi Kabau (Archidendron Bubalinum) Dan Pe- Manfaatannya Di Sumatra. Floribunda, 5(5), 157–164
Hardoyono, F. (2017). Penelitian Dan Pengembangan Sensor Aromatik Wewangian Untuk Autentikasi
Produk Parfum Halal. Jurnal Penelitian Agama, 18(2), 302–322
Zhang, E., Wang, F., Yin, C., Wang, H., Zhu, Y., Duan, H., … Hu, J. (2024). Food Bioscience Application of an electronic nose for the diagnosis of ketosis in dairy cows. Food Bioscience, 60(February), 104355. https://doi.org/10.1016/j.fbio.2024.104355
Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., … Zdeborová, L. (2019). Machine learning and the physical sciences. Reviews of Modern Physics, 91(4), 45002. https://doi.org/10.1103/RevModPhys.91.045002
Ye, Z., Liu, Y., & Li, Q. (2021). Recent progress in smart electronic nose technologies enabled with machine learning methods. Sensors. https://doi.org/10.3390/s21227620
Putri, L. A., Rahman, I., Puspita, M., Hidayat, S. N., Dharmawan, A. B., Rianjanu, A., … Wasisto, H. S. (2023). Rapid analysis of meat floss origin using a supervised machine learning-based electronic nose
towards food authentication. Npj Science of Food, 7(1), 1–15. https://doi.org/10.1038/s41538-023-00205-2
Putra, Y. (2021). Perbandingan Karakteristik Kulit Babi Ternak dengan Kulit Sapi dan Kambing Menggunakan lnstrumen Electronic Nose Berbasis Chemometric untuk Jaminan Kualitas Halal (Doctoral
dissertation, Universitas Negeri Padang)
Inca, I., Widodo, T. W., & Lelono, D. (2018). Klasifikasi Teh Hijau dan Teh Hitam Tambi-Pagilaran dengan Metode Principal Component Analysis (PCA) Menggunakan E-Nose. IJEIS (Indonesian Journal of
Electronics and Instrumentation Systems), 8(1), 61. https://doi.org/10.22146/ijeis.28718
Aji Lintang, C., Wahyu Widodo, T., & Lelono, D. (2016). Rancang Bangun Electronic Nose untuk Mendeteksi Tingkat Kebusukan Ikan Air Tawar CORE View metadata, citation and similar papers at core.ac.uk provided by IJEIS (Indonesian Journal of Electronics and Instrumentation Systems). Ijeis, 6(2), 129–140.
Kombo, K. O., Ihsan, N., Syahputra, T. S., Hidayat, S. N., Puspita, M., Wahyono, … Triyana, K. (2024). Enhancing classification rate of electronic nose system and piecewise feature extraction method to classify black tea with superior quality. Scientific African, 24, e02153. https://doi.org/10.1016/j.sciaf.2024.e02153
Wijaya, D. R., Afianti, F., Arifianto, A., Rahmawati, D., & Kodogiannis, V. S. (2022). Ensemble machine learning approach for electronic nose signal processing. Sensing and Bio-Sensing Research, 36(March), 100495. https://doi.org/10.1016/j.sbsr.2022.100495
DOI: http://dx.doi.org/10.24036/16783171074