Design of Power Monitoring System for 2 Solar Panels Based on Thingspeak

Widya Hasanti - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Mairizwan - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Yulkifli - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131

Abstract


Indonesia is one of the countries with large solar energy potential, namely around 3,294.4 GW recorded in 2022. However, solar energy utilization during 2022 is only 0.01%. Based on this problem, a research was carried out which aimed to combine the power produced by solar panels. This research emerged as a response to the need for energy efficiency and desires. With proper monitoring, solar panel owners can optimize their use of solar energy, reduce waste, and ensure that their solar panels are working at maximum capacity. This research is included in engineering research to determine the performance specifications and design specifications of the system that has been designed. Performance specifications cover a series of system electronic components and monitoring data displays displayed on Thingspeak. The design specifications in this research include sensor characterization, accuracy and precision of the Power Monitoring System For 2 Solar Panels Based On Thingspeak. From the results of the design specifications, the sensor used in the system has a high linearity value, good accuracy of 98.735% (voltage), 97.027% (current), and 97.994% (light intensity) and good accuracy of 99.905% (voltage), 99.549% (current), and 99.874% (light intensity).

Full Text:

PDF

References


DEN, Energi Outlook Indonesia 2022. Jakarta: Dewan Energi Nasional, 2022.

A. Zahedi, Solar Photovoltaic Energy System: Design and Use. Melbourne: The New World Publishing, 1998.

W. Audia, Yulkifli, Mairizwan, and A. Rinaldi, “Automatic Transfer Switch System Design on Solar Cell-Grid Hybrid Based on Android Application,” Eksakta Berk. Ilm. Bid. MIPA, vol. 23, no. 04, pp. 266–283, 2022.

F. S. Raheem and N. Basil, “Automation intelligence photovoltaic system for power and voltage issues based on Black Hole Optimization algorithm with FOPID,” Meas. Sensors, vol. 25, pp. 1–14, 2023, doi: 10.1016/j.measen.2022.100640.

N. Safitri, T. Rihayat, and S. Riskina, Teknologi Photovoltaic, 1st ed., no. Juli. Banda Aceh: Yayasan Puga Aceh Riset, 2019.

B. H. Purwoto, J. Jatmiko, M. A. Fadilah, and I. F. Huda, “Efisiensi Penggunaan Panel Surya sebagai Sumber Energi Alternatif,” Emit. J. Tek. Elektro, vol. 18, no. 1, pp. 10–14, 2018, doi: 10.23917/emitor.v18i01.6251.

A. Maalouf, T. Okoroafor, Z. Jehl, V. Babu, and S. Resalati, “A comprehensive review on life cycle assessment of commercial and emerging thin-film solar cell systems,” Renew. Sustain. Energy Rev., vol. 186, pp. 1–17, 2023, doi: 10.1016/j.rser.2023.113652.

T. Instruments, “INA219 data sheet, product information and support | TI.com,” Www.Ti.Com, 2015.

D. A. O. Turang, “PENGEMBANGAN SISTEM RELAY PENGENDALIAN DAN PENGHEMATAN PEMAKAIAN LAMPU BERBASIS MOBILE,” Semin. Nas. Inform. 2015 (semnasIF 2015), pp. 75–85, 2015, doi: 10.1007/978-3-540-24653-4_8.

M. PAMUNGKAS, H. HAFIDDUDIN, and Y. S. ROHMAH, “Perancangan dan Realisasi Alat Pengukur Intensitas Cahaya,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 3, no. 2, pp. 120–132, 2015, doi: 10.26760/elkomika.v3i2.120.

W. Sunanda, Y. Tiandho, R. F. Gusa, M. Darussalam, and D. Novitasari, “Monitoring of photovoltaic performance as an alternative energy source in campus buildings,” Instrum. Mes. Metrol., vol. 20, no. 3, pp. 153–159, 2021, doi: 10.18280/i2m.200305.

Y. Yulkifli, F. Afriani, Y. Yohandri, and R. Ramli, “The Design of Display Digital Data Interface Clamp-Meter Complemented By Sensor GMR (Giant Magnetoresistance),” Spektra J. Fis. dan Apl., vol. 5, no. 1, pp. 53–60, 2020, doi: 10.21009/spektra.051.06.

Sutono, “Design Trainer Mikrokontroler Arduino Board As Media Learning in Vocational High School ( Smk ),” Pros. Saintiks FTIK UNIKOM, vol. 3, no. 1, pp. 49–60, 2017.

M. R. P. Yusrifal, Y. S. Akil, and Yusran, “Rancang Bangun Buck-Boost Converter Dengan Catu Daya Panel Surya,” J. EKSITASI, vol. 1, no. 1, pp. 22–27, 2022.

Y. S. Parihar, “Internet of Things and Nodemcu,” JETIR, vol. 6, no. 6, pp. 1085–1088, 2019, doi: 10.31031/rmes.2018.06.000636.

M. F. Pela and R. Pramudita, “Sistem Monitoring Penggunaan Daya Listrik Berbasis Internet of Things Pada Rumah Dengan Menggunakan Aplikasi Blynk,” Infotech J. Technol. Inf., vol. 7, no. 1, pp. 47–54, 2021, doi: 10.37365/jti.v7i1.106.

A. I. Abdul-Rahman and C. A. Graves, “Internet of Things Application using Tethered MSP430 to Thingspeak Cloud,” Proc. - 2016 IEEE Symp. Serv. Syst. Eng. SOSE 2016, pp. 352–357, 2016, doi: 10.1109/SOSE.2016.42.

P. Gunoto, A. Rahmadi, and E. Susanti, “Perancangan Alat Sistem Monitoring Daya Panel Surya Berbasis Internet of Things,” Sigma Tek., vol. 5, no. 2, pp. 285–294, 2022, doi: 10.33373/sigmateknika.v5i2.4555.

M. S. Hadi, A. N. Afandi, A. P. Wibawa, A. S. Ahmar, and K. H. Saputra, “Stand-Alone Data Logger for Solar Panel Energy System with RTC and SD Card,” J. Phys. Conf. Ser., vol. 1028, no. 1, pp. 1–9, 2018, doi: 10.1088/1742-6596/1028/1/012065.

M. I. A. Wardhana, H. Priyatman, and H. Judiarto, “Monitoring System Design of Tracking System on Solar Panel Following the Sun Rotation Based on Internet of Things,” Telecommun. Comput. Electr. Eng. J., vol. 1, no. 1, pp. 63–72, 2023, doi: 10.26418/telectrical.v1i1.69944.

L. Kirkup, Experimental Methods for Science and Engineeering Students. Cambridgeshire: Cambridge University Press, 2019.

B. E. Cahyono, I. D. Utami, N. P. Lestari, and N. S. Oktaviany, “Karakterisasi Sensor LDR dan Aplikasinya pada Alat Ukur Tingkat Kekeruhan Air Berbasis Arduino UNO,” J. Teor. dan Apl. Fis., vol. 7, no. 2, pp. 179–186, 2019, doi: 10.23960/jtaf.v7i2.2247.

E. Wiyadi, A. Wati, Y. Hamzah, and L. Umar, “Simple I-V Acquisition Module with High Side Current Sensing Principle for Real Time Photovoltaic Measurement,” J. Phys. Conf. Ser., vol. 1528, no. 1, pp. 0–6, 2020, doi: 10.1088/1742-6596/1528/1/012040.

A. B. Khudhair, F. I. Hussein, and M. A. Obeidi, “Creating a LabVIEW Sub VI for the INA219 Sensor for Detecting Extremely Low-Level Electrical Quantities,” Al-Khwarizmi Eng. J., vol. 19, no. 3, pp. 88–97, 2023, doi: 10.22153/kej.2023.05.001.

F. M. Dewadi et al., FISIKA DASAR I (MEKANIKA DAN PANAS), 1st ed., no. June. Padang: PT GLOBAL EKSEKUTIF TEKNOLOGI, 2023.

R. Rahmatullah et al., “Design and Implementation of IoT-Based Monitoring Battery and Solar Panel Temperature in Hydroponic System,” J. IlmiahTeknik Elektro, vol. 9, no. 3, pp. 810–820, 2023, doi: 10.26555/jiteki.v9i3.26729.

B. J. Setiawan, G. A. Pauzib, A. Riyantoc, and A. Surtono, “Design and Build Voltage and Current Monitoring Parameters Device of Rechargeable Batteries in Real-Time Using the INA219 GY-219 Sensor,” J. Energy, Mater. Instrum. Technol., vol. 4, no. 2, pp. 58–71, 2023, doi: 10.23960/jemit.v4i2.137.

Q. Qomaruddin, A. Setiono, and M. I. Afandi, “Karakterisasi Panel Sel Surya 100 Wp Untuk Sumber Energi Wireless Sensor Di Lapangan,” Pros. Semin. Nas. Fis. SNF2016, vol. 5, pp. 79–82, 2016, doi: 10.21009/0305020116.




DOI: http://dx.doi.org/10.24036/15381171074