Optimization of Carbonization Temperature in the Production of Coconut Pulp-Based Activated Carbon for Thermoelectric Materials

Aliya Nabila - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Yenni Darvina - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Gusnedi - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Rahmat Hidayat - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131

Abstract


A thermoelectric generator is one of the power plants capable of converting thermal energy into electrical energy. Thermoelectricity can be derived from materials based on metal oxide composites with carbon materials, one example is the use of Copper (II) Oxide with activated carbon. Using activated carbon can help reduce thermal conductivity, which will be beneficial in its utilization as a thermoelectric material. Activated carbon comes from biomass waste that has not been fully utilized, such as coconut pulp waste. Utilization of coconut pulp waste can reduce environmental pollution and can add economic value to the waste. The goal of this research is to produce coconut pulp activated carbon at the ideal temperature for usage as thermoelectric materials. The research method used is the experimental method. Coconut pulp activated carbon is obtained through dehydration, carbonization and activation stages. The carbonization temperature variation used is at a temperature of 250ºC, 300ºC, 350ºC, 400ºC, and 450ºC. According to the results of the characterization, the yield, ash content, and bound carbon content of activated carbon decrease with increasing carbonization temperature, while the values of water content and ash content of activated carbon increase. This indicates that the activated carbon made from coconut pulp has met the requirements SNI 06-3730-1995. XRD characterization results show that coconut pulp activated carbon is amorphous and does not show sharp diffraction peaks (significant). For producing activated carbon, coconut pulp is carbonized at a temperature of 300oC to get the optimum temperature.

References


D. Zhao, A. Würger, and X. Crispin, “Ionic thermoelectric materials and devices,” J. Energy Chem., vol. 61, pp. 88–103, 2021, doi: 10.1016/j.jechem.2021.02.022.

Y. Jiang et al., “Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials,” Nat. Commun., vol. 13, no. 1, 2022, doi: 10.1038/s41467-022-33774-z.

Y. Xu et al., “Porous CuO@C composite as high-performance anode materials for lithium-ion batteries,” Dalt. Trans., vol. 49, no. 33, pp. 11597–11604, 2020, doi: 10.1039/d0dt02493g.

Ratnawulan, A. Fauzi1, and S. H. AE, “Effect of Calcination Temperature on Phase Transformation and Crystallite Size of Copper Oxide (CuO) Powders,” AIP Conf. Proc. 1868, vol. 060009, no. October, 2022, doi: 10.1063/1.4995173.

N. Yoshida, T. Naito, and H. F. Ã, “Thermoelectric Properties of Li-Doped CuO,” Jpn. J. Appl. Phys., vol. 52, pp. 1–5, 2013, doi: 10.7567/JJAP.52.031102.

M. Campoy-Quiles, “Will organic thermoelectrics get hot?,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 377, no. 2152, 2019, doi: 10.1098/rsta.2018.0352.

Hartanto, “Pembuatan karbon aktif dari empurung kelapa Sawit dengan metode aktivasi kimia,” J. Sains Mater. Indones., vol. 12, no. 1, pp. 12–16, 2010, [Online]. Available: http://jurnal.batan.go.id/index.php/jsmi/article/view/4588/4002

S. Suliesyah and A. D. Astuti, “OPTIMASI AKTIVATOR ZnCL2 DALAM PEMBUATAN KARBON AKTIF DARI BATUBARA DAN PENGUJIAN KARBON AKTIF SEBAGAI ADSORBEN,” J. Penelit. Dan Karya Ilm. Lemb. Penelit. Univ. Trisakti, vol. 6, no. 2, pp. 191–201, 2021, doi: 10.25105/pdk.v6i2.9525.

E. M. Gultom and M. T. Lubis, “APLIKASI KARBON AKTIF DARI CANGKANG KELAPA SAWIT DENGAN AKTIVATOR H 3 PO 4 UNTUK PENYERAPAN LOGAM BERAT Cd DAN Pb,” 2014.

P. Paryanto, M. E. Saputro, and R. A. Nugroho, “Produksi Karbon Aktif Dari Buah Mangrove Menggunakan Aktivator Kalium Hidroksida,” J. Inov. Tek. Kim., vol. 4, no. 1, pp. 2012–2014, 2019, doi: 10.31942/inteka.v4i1.2684.

J. Youn et al., “Low thermal conductivity in GeTe-based thermoelectric materials with additional activated carbon,” Appl. Phys. Lett., vol. 118, no. 5, 2021, doi: 10.1063/5.0039883.

Y. Yin, B. Tudu, and A. Tiwari, “Recent advances in oxide thermoelectric materials and modules,” Vacuum, vol. 146, pp. 356–374, 2017, doi: 10.1016/j.vacuum.2017.04.015.

U. Pratama, “Preparasi dan Karakterisasi Komposit Karbon Aktif Cangkang Kelapa Sawit – Tembaga (II) Oksida (CuO) sebagai Material Termoelektrik,” Universitas Negeri Padang, 2018.

R. Ulfah, “Preparasi dan Karakterisasi Komposit Karbon Aktif Kulit Kakao (Theobroma cacao L.) – Tembaga (II) Oksida (CuO) sebagai Material Termoelektrik,” Universitas Negeri Padang, 2019.

I. Arazi and A. Putra, “Preparation and Characterization Composites of Activated Carbon from Cassava Peel (Manihot Utillisima) - Copper (II) Oxide (CuO) as a Thermoelectric Material,” Int. J. Res. Rev., vol. 7, no. 9, p. 42, 2020.

F. Azizah, “Preparasi dan Karakterisasi Komposit Karbon Aktif Kulit Durian (Durio zibethinus) – Tembaga (II) Oksida (CuO) sebagai Material Termoelektrik,” Universitas Negeri Padang, 2021.

N. A. Putra, “Pemanfaatan Karbon Aktif Limbah Sabut Kelapa (Cocos Nucifera) Sebagai Material Termoelektrik Sistem C/CuO,” Universitas Negeri Padang, 2022. [Online]. Available: http://repository.unp.ac.id/id/eprint/39772

I. W. K. Suryawan, A. D. Nastiti, N. H. Putri, A. A. Marwan, A. N. Khairan, and A. Sarwono, “Potensi Pemanfaatan Ampas Kelapa Sebagai Biodiesel di Indonesia,” Media Ilm. Tek. Lingkung., vol. 7, no. 1, pp. 9–17, 2022, doi: 10.33084/mitl.v7i1.2718.

M. A. Yahya, Z. Al-Qodah, C. W. Z. C. W. Ngah, and M. A. Hashim, “Preparation and characterization of activated carbon from desiccated coconut residue by potassium hydroxide,” Asian J. Chem., vol. 27, no. 6, pp. 2331–2336, 2015, doi: 10.14233/ajchem.2015.18804.

K. Balasubramaniam, “POLYSACCHARIDES OF THE KERNEL OF MATURING AND MATURED COCONUTS,” J. FOOD Sci., vol. 41, pp. 1370–1373, 1976.

S. P. Ng, C. P. Tan, O. M. Lai, K. Long, and H. Mirhosseini, “Extraction and characterization of dietary fiber from coconut residue,” J. Food, Agric. Environ., vol. 8, no. 2, pp. 172–177, 2010.

F. Destyorini, A. Suhandi, A. Subhan, and N. Indayaningsih, “PENGARUH SUHU KARBONISASI TERHADAP STRUKTUR DAN KONDUKTIVITAS LISTRIK ARANG SERABUT KELAPA,” J. Fis. Himpun. Fis. Indones., vol. 10, no. 2, pp. 122–132, 2010.

E. Junary, J. P. Pane, and N. Herlina, “PENGARUH SUHU DAN WAKTU KARBONISASI TERHADAP NILAI KALOR DAN KARAKTERISTIK PADA PEMBUATAN BIOARANG BERBAHAN BAKU PELEPAH AREN (Arenga pinnata),” J. Tek. Kim. USU, vol. 4, no. 2, pp. 46–52, 2015.

M. A. Yahya, C. W. Z. C. W. Ngah, M. A. Hashim, and Z. Al-qodah, “Preparation of Activated Carbon from Desiccated Coconut Residue by Chemical Activation with NaOH,” J. Mater. Sci. Res., vol. 5, no. 1, 2016, doi: 10.5539/jmsr.v5n1p24.

M. H. Aldofraji, “Pembuatan Karbon Aktif Dari Ampas Kelapa Dengan Variasi Jenis Dan Jumlah Konsentrasi Senyawa Zat Aktivator.” 2020.

W. F. Dewatisari, L. Rumiyanti, and I. Rakhmawati, “Rendemen dan Skrining Fitokimia pada Ekstrak Daun Sanseviera sp.,” J. Penelit. Pertan. Terap., vol. 17, no. 3, p. 197, 2018, doi: 10.25181/jppt.v17i3.336.

M. I. Sari, M. G. Markasiwi, and R. W. Putri, “UJI KARAKTERISTIK FISIK PEMBUATAN KARBON AKTIF DARI LIMBAH DAUN NANAS (Ananas comosus) MENGGUNAKAN AKTIVATOR H3PO4,” J. Tek. Patra Akad., vol. 12, no. 02, pp. 4–11, 2021, doi: 10.52506/jtpa.v12i02.129.

N. H. Sulaiman, L. A. Malau, F. H. Lubis, N. Br Harahap, F. R. Manalu, and A. Kembaren, “Pengolahan Tempurung Kemiri Sebagai Karbon Aktif Dengan Variasi Aktivator Asam Fosfat,” EINSTEIN e-JOURNAL, vol. 5, no. 2, 2018, doi: 10.24114/einstein.v5i2.11841.

D. D. Jaya and M. Khair, “Pembuatan Karbon Aktif Melalui Karbonisasi Batang Kelapa Sawit,” Chem. J. State Univ. Padang, vol. 9, no. 1, pp. 7–10, 2020, [Online]. Available: http://ejournal.unp.ac.id/index.php/kimia/article/view/108710

BSN, “Sni 06-3730-1995,” Badan Standar Nasional-BSN, pp. 33–36, 1995.

Y. Hendrawan, S. M. Sutan, and R. K. Y. R, “Pengaruh Variasi Suhu Karbonisasi dan Konsentrasi Aktivator terhadap Karakteristik Karbon Aktif dari Ampas Tebu ( Bagasse ) Menggunakan Activating Agent NaCl,” J. Keteknikan Pertan. Trop. dan Biosist., vol. 5, no. 3, pp. 200–207, 2017.

E. Nurisman, A. Miarti, and A. Sharul, “Studi Eksperimental Pengaruh Suhu Karbonisasi pada Prototipe Electrical Studi Eksperimental Pengaruh Suhu Karbonisasi pada Prototipe Electrical Carbonization Furnace ( ECF ) terhadap Rendemen dan Analisis Proksimat Karbon Aktif dari Limbah Tempurung Kelap,” Proceeding Semin. Nas. Pengelolaan Lingkung. 2017 (SNPL 2017), no. February, 2017.

S. Oko et al., “Pengaruh Suhu dan Konsentrasi Aktivator HCl terhadap Karakteristik Karbon Aktif dari Ampas Kopi Metana : Media Komunikasi Rekayasa Proses dan Teknologi Tepat Guna,” Metana Media Komun. Rekayasa Proses dan Teknol. Tepat Guna, vol. 17, no. 1, pp. 15–21, 2021.

N. A. Putra and A. Putra, “Pengujian Aproksimat Karbon Limbah Sabut Kelapa (Cocos nucifera),” J. Period. Jur. Kim. UNP, vol. 12, no. 1, p. 27, 2023, doi: 10.24036/p.v12i1.116901.

S. Putro, Musabbikhah, and Suranto, “Variasi Temperatur dan Waktu Karbonisasi untuk Meningkatkan Nilai Kalor dan Memperbaiki Sifat Proximate Biomassa sebagai Bahan Pembuat Briket yang Berkualitas,” Simp. Nas. RAPI XIV - 2015 FT UMS ISSN 1412-9612, pp. 282–288, 2015.

A. A. Olthman et al., “A Novel study on Synthesis of Egg shell based activated carbon for degradation of methylene Blue via photocatalysis,” Arab. J. Chem., 2020, doi: 10.1016/j.arabjc.2020.10.002.

F. P. Perdani, C. A. Riyanto, and Y. Martono, “Karakterisasi Karbon Aktif Kulit Singkong ( Manihot esculenta Crantz ) Berdasarkan Variasi Konsentrasi H 3 PO 4 dan Lama Waktu Aktivasi,” Indones. J. Chem. Anal., vol. 4, no. September, 2021, doi: 10.20885/ijca.vol4.iss2.art4.

G. A. Wardani, A. N. Octavia, M. Fathurohman, and T. Hidayat, “Arang Aktif Ampas Tebu Termodifikasi Kitosan sebagai Adsorben Tetrasiklin : Pemanfaatan Metode Kolom [ Chitosan Modified Sugarcane Bagasse Activated Charcoal as Tetracycline Adsorbent : Utilization of the Column Method ],” KOVALEN J. Ris. Kim., vol. 8, no. 3, pp. 280–291, 2022.

Y. Shi, G. Liu, L. Wang, and H. Zhang, “RSC Advances Activated carbons derived from hydrothermal impregnation of sucrose with phosphoric acid : remarkable adsorbents for sulfamethoxazole,” RSC Adv., vol. 9, pp. 17841–17851, 2019, doi: 10.1039/C9RA02610J.

A. Dwi Ardianti, “Analisis Morfologi dan Struktur Karbon Aktif Kulit Salak Wedi dengan Aktivator Bertingkat,” J. Ilmu dan Inov. Fis., vol. 6, no. 1, pp. 53–60, 2022, doi: 10.24198/jiif.v6i1.37720.




DOI: http://dx.doi.org/10.24036/15346171074