Compressive Strength Analysis of Mortar Made from Volcanic Sand in Nagari Aia Angek Based on Magnetic Mineral Content

Fajar Amirullah - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Hamdi - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Letmi Dwiridal - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Harman Amir - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Syafriani - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Ratnawulan - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131

Abstract


Mortar is a binder or adhesive with a standard viscosity of ingredients (water, cement, and sand). Mortar made has strength, mortar strength is measured using Cement Compression testing machine. Sand in mortar making contains magnetic minerals such as magnetite (Fe3O4) or Fe2+3Fe+2O4-2, hematite mineral (α-Fe2O3) which will be measured for magnetic susceptibility value using Bartington Magnetic Susceptibility Meter Sensor Type B (MS2B). To determine the concentration of magnetic minerals and their relationship with mortar compressive strength, the rock magnetism method was used. Measurement of sand samples of Kamumuan River, Sungai Limau District using Bartington Magnetic Susceptibility Meter Sensor Type B (MS2B) by categorizing sand into 3 treatment, namely Addition of magnetic minerals (PTM) with χLF value 3863.3 x 10-8m3/kg and χFD (%) 0.72, reduction of magnetic minerals (PKM) with χLF value 1920 x 10-8m3/kg and χFD (%) 0.79, normal magnetic minerals (PM) with χLF value 2334.7 x 10-8m3/kg and χFD (%) 0.62. The sample has a grain type that is almost no superparamagnetic grain and has antiferromagnetic properties. Samples grouped by treatment were made into mortar and tested using a cement compression testing machine with the results of mortar compressive strength, namely ATM of 49.4 Kg/cm², AKM of 46.6 Kg/cm², and AM 52.3 Kg/cm². Based on the analysis conducted, the magnetic minerals contained in the sand affect the results of the compressive strength of the mortar, the higher the susceptibility value in the sand, the stronger the compressive strength of the mortar

Full Text:

PDF

References


T. Mulyono, “TEKNOLOGI BETON: Dari Teori Ke Praktek,” no. March, 2019.

Y. dkk Lado, “Uji Kuat Tekan Beton dan Mortar Menggunakan Pasir Kali Noeleke,” J. Tek. Sipil, vol. VII, no. 1, pp. 37–44, 2018.

M. Pataras, I. F. Astira, J. Arliansyah, P. Rangkuti, and B. Roynaldo, “Analisis penggunaan pasir pantai, darat, dan sungai terhadap kinerja laston dan lataston wearing course,” J. Tek. Sipil Unsri, no. September, pp. 479–487, 2017.

M. Qomaruddin, “Studi Komparasi Karakteristik Pasir Sungai Dikabupaten Jepara,” J. Ilm. Teknosains, vol. 4, no. 1, pp. 6–10, 2018, doi: 10.26877/jitek.v4i1.2283.

M. Ito, A. H. Daulay, and L. H. Lubis, “Karakterisasi Kandungan Mineral dan Pengaruh Treatment Panas Pasir Besi Hulu Sungai Seruai Kabupaten Deli Serdang,” vol. 5, no. 3, pp. 151–160, 2023.

Helmita, H. Rifai, and L. Dwiridal, “Characterization and Identification of Magnetic Mineral Content in Industrial Dry Ink (Toner),” J. Phys. Conf. Ser., vol. 2309, no. 1, 2022, doi: 10.1088/1742-6596/2309/1/012014.

R. N. Fajri, R. Putra, C. B. De Maisonneuve, A. Fauzi, Yohandri, and H. Rifai, “Analysis of magnetic properties rocks and soils around the Danau Diatas, West Sumatra,” J. Phys. Conf. Ser., vol. 1185, no. 1, 2019, doi: 10.1088/1742-6596/1185/1/012024.

Afdal and L. Niarti, “KARAKTERISASI SIFAT MAGNET DAN KANDUNGAN MINERAL PASIR BESI SUNGAI BATANG KURANJI PADANG SUMATERA BARAT,” vol. 5, no. 1, pp. 24–30, 2013.

R. Rahmayuni, H. Rifai, L. Dwiridal, A. N. Yuwanda, D. A. Visgun, and A. Rahmi, “Eksakta Article Distribution Pattern of Magnetic Susceptibility Value of Iron Sand on the Surface of Pasia Jambak Beach Pasia Nan Tigo Padang,” vol. 22, no. 04, pp. 302–310, 2021, [Online]. Available: https://doi.org/10.24036/eksakta/vol22-iss4/274

SNI 03-1974, “Metode Pengujian Kuat Tekan Beton,” Sni 03-1974-1990, pp. 2–6, 1990.

W. I. Dharmawan, D. Oktarina, and M. Safitri, “Perbandingan Nilai Kuat Tekan Beton Menggunakan Hammer Test dan Compression Testing Machine terhadap Beton Pasca Bakar,” Media Komun. Tek. Sipil, vol. 22, no. 1, pp. 35–42, 2016, doi: 10.14710/mkts.v22i1.12404.

M. Yunanda, “Perbandingan Kuat Tekan Mortar Dengan Memanfaatkan Coal Ash Waste,” J. Tek. Sipil, vol. 7, no. 2, pp. 33–40, 2019, doi: 10.36546/tekniksipil.v7i2.241.

J. A. Dearing et al., “Frequency-dependent susceptibility measurements of environmental materials,” Geophys. J. Int., vol. 124, no. 1, pp. 228–240, 1996, doi: 10.1111/j.1365-246X.1996.tb06366.x.

H. Rifai, R. Putra, M. R. Fadila, E. Erni, and C. M. Wurster, “Magnetic Susceptibility and Heavy Metals in Guano from South Sulawesi Caves,” IOP Conf. Ser. Mater. Sci. Eng., vol. 335, no. 1, 2018, doi: 10.1088/1757-899X/335/1/012001.

SNI 03-6825-2002, “Sni 03-6825-2002,” Standar Nas. Indones. Metod. Penguji. kekuatan tekan mortar semen Portl. untuk Pekerj. sipil, 2002.

S. S. Mukrimaa et al., Graham Borradaile, 2003 - Statistics of Earth Science Data_ Their Distribution in Time, Space, and Orientation, vol. 6, no. August. 2016.

A. P. Sihombing, Y. Afrizal, and A. Gunawan, “Pengaruh Penambahan Arang Batok Kelapa Terhadap Kuat Tekan Mortar,” Inersia, J. Tek. Sipil, vol. 10, no. 1, pp. 31–38, 2018, doi: 10.33369/ijts.10.1.31-38.




DOI: http://dx.doi.org/10.24036/15247171074