Compressive Strength Analysis of Mortar Made from Volcanic Sand in Nagari Aia Angek Based on Magnetic Mineral Content

Syahputri Sumanti - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Hamdi - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Akmam - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Harman Amir - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Syafriani - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Ratnawulan - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131

Abstract


Compressive strength testing is carried out on mortar made from a mixture of sand, cement and water. Mortar is one of the construction materials in building structures that has the main function as a material for construction parts. The compressive strength test is useful for measuring and knowing the strength of objects against compressive forces. The method used in this research is rock magnetism to determine the abundance of magnetic minerals and compressive strength testing to determine the relationship of compressive strength results to the magnetic minera content of Nagari Aia Angek volcanic sand. Volcanic sand is measured using a Bartington Susceptibility Meter Type MS2B with 3 forms of mineral separation treatment, namely Magnetic Mineral Reduction (PMM) with a value of χlf  505,99 x10 m-83 /kg, χfd (%) 2.72%, Additional Magnetic Minerals (TMM) with a value of χlf 1026.72 x10 m-83 /kg, χfd (%) 2.14%, and No Treatment (TP) with a value of χlf 853.98 x10 m-83 /kg, χlf (%) 2.16. The results of testing the compressive strength of mortar using Compression Testing Mechine on 3 volcanic sand treatments were obtained (PMM) with a value of 169.14 kg/cm2, (TMM) with a value of 147.11 kg/cm2, and (TP) with a value of 141.81 kg/cm2. The magnetic properties of volcanic sand samples are antiferrimagnetic and have superparamagnetic mixed grains and coarse grains. There is a relationship between the compressive strength value of mortar and the concentration of magnetic minerals, the higher the compressive strength value, the higher the χfd (%) value obtained

Full Text:

PDF

References


D. Y. Simanullang, “Kajian Kuat Tekan Mortar Menggunakan Pasir Sungai dan Pair Apung dengan Bahan Tambah Fly Ash dan Conplast dengan Perawatan (Curing),” J. Tek. Sipil, Univ. Sriwij., vol. 2, no. 4, pp. 621–631, 2014.

Y. Lado, S. Utomo, and E. Hunggurami, “Uji Kuat Tekan Beton dan Mortar Menggunakan Pasir Kali Noeleke,” J. Tek. Sipil, vol. 7, no. 1, pp. 37–44, 2018.

M. Pataras, J. Arliansyah, P. Rangkuti, B. Roynaldo, and I. F. Astira, “Analisis Penggunaan Pasir Pantai, Darat, dan Sungai Terhadap Kinerja Laston dan Lataston Wearing Course,” J. Tek. Sipil Unsri, pp. 479–487, 2017.

A. R. Anshory, S. Sumarni, and Roemintoyo, “Pemanfaatan Abu Vulkanik Gunung Kelud Sebagai Pengganti Sebagian Agregat Halus Pada Beton Normal Sebagai Pendukung Bahan Ajar Mata Kuliah Teknologi Beton (Pada Mahasiswa PTB, JPTK, UNS),” Indones. J. Civ. Eng. Educ., vol. 1, no. 1, pp. 1–11, 2015, doi: 10.20961/ijcee.v1i1.16898.

Sunaryo and W. Widyawidura, “Metode Pembelajaran Bahan Magnet Dan Identifikasi Kandungan Senyawa Pasir Alam Menggunakan Prinsip Dasar Fisika,” J. Cakrawala Pendidik., vol. 1, no. 1, pp. 67–79, 2010, doi: 10.21831/cp.v1i1.219.

S. H. Dewi and W. A. Adi, “Synthesis and characterization of high purity Fe3O4 and α - Fe2O3 from local iron sand,” J. Phys. Conf. Ser., vol. 1091, no. 1, 2018, doi: 10.1088/1742-6596/1091/1/012021.

L. A. Melinia, E. Puspita, M. Naibaho, Ramlan, and M. Ginting, “Analisa Pasir Besi Alam dari Sungai Musi Sumatera Selatan,” J. Penelit. Sains, vol. 24, no. 3, pp. 122–126, 2022, [Online]. Available: http://ejurnal.mipa.unsri.ac.id/index.php/jps/index

Helmita, H. Rifai, and L. Dwiridal, “Characterization and Identification of Magnetic Mineral Content in Industrial Dry Ink (Toner),” J. Phys. Conf. Ser., vol. 2309, no. 1, 2022, doi: 10.1088/1742-6596/2309/1/012014.

I. Agus, “Pengaruh Subtitusi Pasir Besi Terhadap Nilai Kuat Tekan Beton,” MEDIA Inov. Tek. Sipil Unidayan, vol. 8, no. 2, pp. 110–120, 2020.

F. Darwis, M. A. Sultan, and D. Sidogu, “Variasi Penggunaan Pasir Besi Pada Campuran Mortar,” J. Sci. Eng., vol. 1, no. 1, pp. 21–30, 2018, doi: 10.33387/josae.v1i1.756.

A. M. Albar, A. Perdana Putra, and E. A. Pradana Putra, “Analisis Kandungan Mineral Pasir Besi Pantai Selatan Kabupaten Lumajang Hasil Separasi Magnetik,” J. Teknol. Kim. Miner., vol. 1, no. 2, pp. 70–75, 2022.

Fatni Mufit, Fadhillah, Harman Amir, and B. Satria, “Kajian tentang Sifat Magnetik Pa sir Besi dari Pantai Sunur, Pariaman, Sumatera Barat,” J. Geofis. vol. 1, pp. 2–5, 2006.

V. A. Tiwow, M. J. Rampe, and M. Arsyad, “Kajian Suseptibilitas Magnetik Bergantung Frekuensi terhadap Pasir Besi Kabupaten Takalar,” Sainsmat J. Ilm. Ilmu Pengetah. Alam, vol. 7, no. 2, p. 136, 2018, doi: 10.35580/sainsmat7273662018.

Dearing, Environmental Magnetic Susceptibility Using The Bartington MS2 System. England: Chi Publishing, 1999.

Hunt, Handbook From The Environmental Magnetism Workshop. University of Minnesota, 1991.

SNI 03-6825-2002, “Metode Pengujian Kekuatan Tekan Mortar Semen Portland Untuk Pekerjaan Sipil,” Standar Nasional Indonesia Metode pengujian kekuatan tekan mortar semen Portland untuk pekerjaan sipil. 2002.

G. Borradaile, Statistics of Earth Science Data. Germany: Springer-Verlag Berlin Heidelberg, 2003.

Jahidin, “Analisis Suseptibilitas Magnetik Pasir Besi Desa Laea Kabupaten Buton Utara Sulawesi Tenggara,” Apl. Fis., vol. 8, no. 1, pp. 20–24, 2012.

M. O. Kanu, O. C. Meludu, and S. A. Oniku, “A Preliminary Assessment of Soil Pollution in Some Parts of Jalingo Metropolis, Nigeria Using Magnetic Susceptibility Method,” vol. 5, no. 2, pp. 53–61, 2013.




DOI: http://dx.doi.org/10.24036/15122171074