Analysis Titanium Dioxide and Zinc Oxide in Physical Sunscreen Commercial with Protection Value 35 SPF

Fuad Sofaturrohman - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Lia Rifka - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Maritza Syalsabilla - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Mira Syuriyani - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Nadia Raisa - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Riri Jonuarti - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Ratnawulan - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Rahmat Hidayat - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131

Abstract


This is descriptive research. A descriptive analysis method is a method of explaining symptoms using various variables from the study that are related to one another. This study investigated the shape, size, and composition of TiO2 and ZnO nanoparticles used in sunscreens to reflect and scatter ultraviolet radiation. The study focuses on the effects of these inorganic substances on ultraviolet and visible light absorption and reflection. XRF, UV-Vis spectroscopy, and XRD were used to analyze TiO2 and ZnO particles taken from 50-SPF sunscreen. The concentrations of TiO2 and ZnO in the product were 29.625% and 0.045%, respectively. The sizes of TiO2 and ZnO are obtained using a systematic equation, with the TiO2-particle nanosize of 26.31 nm in the form of TiO2-anorthic respectively. Based on the results obtained, the greater the TiO2 and ZnO content used, the greater the UV absorbance produced. Maximum absorbance indicates that electrons cannot absorb energy at that wavelength, so the energy is just passed through. Meanwhile, the greater the TiO2 and ZnO content used, the less reflectance there is in the UV region, and the visible light produced will also increase. Meanwhile, the greater the TiO2 and ZnO content used, the greater the reflectance in the UV region and the visible light produced

Full Text:

PDF

References


M. Battistin et al., “A new approach to UV protection by direct surface functionalization of TiO2 with the antioxidant polyphenol dihydroxyphenyl benzimidazole carboxylic acid,” Nanomaterials, vol. 10, no. 2, Feb. 2020, doi: 10.3390/nano10020231.

Y. Fang, X. Lu, W. Chen, Y. Fang, X. Lu, and W. Chen, “Application of Nano-TiO2 in Cosmetics,” General Chemistry, vol. 3, no. 2, pp. 125–129, 2017, doi: 10.21127/yaoyigc20160007.

P. Lehmann, “Sun exposed skin disease,” Clin Dermatol, vol. 29, no. 2, pp. 180–188, Mar. 2011, doi: 10.1016/j.clindermatol.2010.09.010.

J. A. Parrish, K. F. Jaenicke, and R. Rox ANDERSON, “ERYTHEMA AND MELANOGENESIS ACTION SPECTRA OF NORMAL HUMAN SKIN*,” 1982.

H. L. P. Klug et al., “Sunscreen prevention of melanoma in man and mouse,” Pigment Cell and Melanoma Research, vol. 23, no. 6. pp. 835–837, Dec. 2010. doi: 10.1111/j.1755-148X.2010.00756.x.

M. D. Mota, A. N. da Boa Morte, L. C. R. C. e. Silva, and F. A. Chinalia, “Sunscreen protection factor enhancement through supplementation with Rambutan (Nephelium lappaceum L) ethanolic extract,” J Photochem Photobiol B, vol. 205, Apr. 2020, doi: 10.1016/j.jphotobiol.2020.111837.

D. R. Sambandan and D. Ratner, “Sunscreens: An overview and update,” Journal of the American Academy of Dermatology, vol. 64, no. 4. pp. 748–758, Apr. 2011. doi: 10.1016/j.jaad.2010.01.005.

G. & J. A. W. Nole, “An analysis of cumulative lifetime solar ultraviolet radiation exposure and the benefits of daily sun protection,” Dermatol Ther, vol. 17, pp. 57–62, 2004.

B. Corry Jayati, R. Annisa, A. Firman Firdausy, D. Sinta Megawati, and B. Fauziyah, “Effect of Addition Virgin Coconut Oil (VCO) on Physical Stability and SPF Value of Sunscreen Cream Combination of Zinc Oxide and Titanium Dioxide,” 2021.

J. J. Reinosa, P. Leret, C. M. Álvarez-Docio, A. Del Campo, and J. F. Fernández, “Enhancement of UV absorption behavior in ZnO-TiO2composites,” Boletin de la Sociedad Espanola de Ceramica y Vidrio, vol. 55, no. 2, pp. 55–62, 2016, doi: 10.1016/j.bsecv.2016.01.004.

Nakissa. A. M. W. N. V. G. J. Z. D. H. D. P. P. H. S. C. R. C. A. K. P. S. E. M. P. C. H. W. H. D. and L. F. Buhse. Sadrieh, “Lack of Significant Dermal Penetration of Titanium Dioxide (TiO2) from Sunscreen Formulations containing Nano- and Sub-Micron-Size TiO2 Particles,” Toxicol. Sci., vol. 115, pp. 156–166, 2010.

J. C. Van Der Pols, G. M. Williams, N. Pandeya, V. Logan, and A. C. Green, “Prolonged prevention of squamous cell carcinoma of the skin by regular sunscreen use,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 12, pp. 2546–2548, Dec. 2006, doi: 10.1158/1055-9965.EPI-06-0352.

C. Antoniou, M. G. Kosmadaki, A. J. Stratigos, and A. D. Katsambas, “Sunscreens - What’s important to know,” Journal of the European Academy of Dermatology and Venereology, vol. 22, no. 9. pp. 1110–1119, Sep. 2008. doi: 10.1111/j.1468-3083.2007.02580.x.

F. Fang, J. Kennedy, E. Manikandan, J. Futter, and A. Markwitz, “Morphology and characterization of TiO 2 nanoparticles synthesized by arc discharge,” Chem Phys Lett, vol. 521, pp. 86–90, Jan. 2012, doi: 10.1016/j.cplett.2011.11.046.

C. Couteau, R. Chammas, S. Alami-El Boury, B. Choquenet, E. Paparis, and L. J. M. Coiffard, “Combination of UVA-filters and UVB-filters or inorganic UV filters-Influence on the sun protection factor (SPF) and the PF-UVA determined by in vitro method,” Journal of Dermatological Science, vol. 50, no. 2. pp. 159–161, May 2008. doi: 10.1016/j.jdermsci.2007.11.007.

A. L. Ginzburg, R. S. Blackburn, C. Santillan, L. Truong, R. L. Tanguay, and J. E. Hutchison, “Zinc oxide-induced changes to sunscreen ingredient efficacy and toxicity under UV irradiation,” Photochemical and Photobiological Sciences, vol. 20, no. 10, pp. 1273–1285, Oct. 2021, doi: 10.1007/s43630-021-00101-2.

E. B. Manaia, R. C. K. Kaminski, M. A. Corrêa, and L. A. Chiavacci, “Inorganic UV filters,” Brazilian Journal of Pharmaceutical Sciences, vol. 49, no. 2, pp. 201–209, Jan. 2013, doi: 10.1590/S1984-82502013000200002.

P. Morganti, “Clinical, Cosmetic and Investigational Dermatology Use and potential of nanotechnology in cosmetic dermatology,” 2010. [Online]. Available: www.dovepress.com

M. Geppert et al., “Interactions of tio2 nanoparticles with ingredients from modern lifestyle products and their effects on human skin cells,” Chem Res Toxicol, vol. 33, no. 5, pp. 1215–1225, May 2020, doi: 10.1021/acs.chemrestox.9b00428.

N. J. Lowe, “An overview of ultraviolet radiation, sunscreens, and photo-induced dermatoses,” Dermatologic Clinics, vol. 24, no. 1. pp. 9–17, Jan. 2006. doi: 10.1016/j.det.2005.08.001.

P. J. Lu, S. W. Fang, W. L. Cheng, S. C. Huang, M. C. Huang, and H. F. Cheng, “Characterization of titanium dioxide and zinc oxide nanoparticles in sunscreen powder by comparing different measurement methods,” J Food Drug Anal, vol. 26, no. 3, pp. 1192–1200, Jul. 2018, doi: 10.1016/j.jfda.2018.01.010.

O. Mileyeva-Biebesheimer, “A Dissertation entitled An Investigation into Metal Oxide Nanoparticle Toxicity to Bacteria in Environmental Systems Using Fluorescence Based Assays,” 2011.

L. T. N. Ngoc, V. Van Tran, J. Y. Moon, M. Chae, D. Park, and Y. C. Lee, “Recent trends of sunscreen cosmetic: An update review,” Cosmetics, vol. 6, no. 4, 2019, doi: 10.3390/COSMETICS6040064.

T. G. Smijs and S. Pavel, “Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness,” Nanotechnology, Science and Applications, vol. 4, no. 1. Dove Medical Press Ltd, pp. 95–112, 2011. doi: 10.2147/nsa.s19419.

C. Cole, T. Shyr, and H. Ou-Yang, “Metal oxide sunscreens protect skin by absorption, not by reflection or scattering,” Photodermatol Photoimmunol Photomed, vol. 32, no. 1, pp. 5–10, Jan. 2016, doi: 10.1111/phpp.12214.

R. Jonuarti, T. Wungu, F. Haryanto, and S. Suprijadi, Gel tabir surya berbahan aktif titanium dioksida dengan beberapa variasi perbandingan konsentrasi dalam carbopol (1% b/b) Technical Laboratory View project Dose calculation of Gamma Knife PerfexionTM based on Monte Carlo simulations View project. [Online]. Available: https://www.researchgate.net/publication/348523566

M. Norval et al., “The effects on human health from stratospheric ozone depletion and its interactions with climate change,” Photochemical and Photobiological Sciences, vol. 6, no. 3, pp. 232–251, Mar. 2007, doi: 10.1039/b700018a.

J. B. Kerr and V. E. Fioletov, “Surface ultraviolet radiation,” Atmosphere - Ocean, vol. 46, no. 1. pp. 159–184, Mar. 2008. doi: 10.3137/ao.460108.

W. A. Adi Pratama dan Karim Zulkarnain Fakultas Farmasi Ugm Yogyakarta, “UJI SPF IN VITRO DAN SIFAT FISIK BEBERAPA PRODUK TABIR SURYA YANG BEREDAR DI PASARAN,” 2015.

A. Modenese, L. Korpinen, and F. Gobba, “Solar radiation exposure and outdoor work: An underestimated occupational risk,” International Journal of Environmental Research and Public Health, vol. 15, no. 10. MDPI AG, Oct. 01, 2018. doi: 10.3390/ijerph15102063.

A. O. , M. P. dan H. I. M. Barel, Handbook of Cosmetic Science and Technology. New York: Marcel Dekker, Inc, 2001.

D. McDaniel, P. Farris, and G. Valacchi, “Atmospheric skin aging—Contributors and inhibitors,” Journal of Cosmetic Dermatology, vol. 17, no. 2. Blackwell Publishing Ltd, pp. 124–137, Apr. 01, 2018. doi: 10.1111/jocd.12518.

K. Chalastara, F. Guo, S. Elouatik, and G. P. Demopoulos, “Tunable Composition Aqueous-Synthesized Mixed-Phase TiO2 Nanocrystals for Photo-Assisted Water Decontamination: Comparison of Anatase, Brookite and Rutile Photocatalysts,” Catalysts, vol. 10, no. 4, Apr. 2020, doi: 10.3390/catal10040407.

X. Pang, C. Chen, H. Ji, Y. Che, W. Ma, and J. Zhao, “Unraveling the photocatalytic mechanisms on TiO2 surfaces using the oxygen-18 isotopic label technique,” Molecules, vol. 19, no. 10. MDPI AG, pp. 16291–16311, Oct. 01, 2014. doi: 10.3390/molecules191016291.

K. M. Tyner, A. M. Wokovich, D. E. Godar, W. H. Doub, and N. Sadrieh, “The state of nano-sized titanium dioxide (TiO2) may affect sunscreen performance,” Int J Cosmet Sci, vol. 33, no. 3, pp. 234–244, Jun. 2011, doi: 10.1111/j.1468-2494.2010.00622.x.

L. M. W. W. M. T. Y. M. S. T. K. K. Sakae Tanemuraa, “Fabrication and characterization of anatase/rutile–TiO2 thin films by magnetron sputtering: a review,” Sci Technol Adv Mater, vol. 6, pp. 11–17, 2005.

W. Xie, R. Li, and Q. Xu, “Enhanced photocatalytic activity of Se-doped TiO2 under visible light irradiation,” Sci Rep, vol. 8, no. 1, Dec. 2018, doi: 10.1038/s41598-018-27135-4.

R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M. F. Benedetti, and F. Fiévet, “Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium,” Nano Lett, vol. 6, no. 4, pp. 866–870, Apr. 2006, doi: 10.1021/nl052326h.

S. M. Choi and H. Awaji, “Nanocomposites - A new material design concept,” Science and Technology of Advanced Materials, vol. 6, no. 1. Elsevier BV, pp. 2–10, 2005. doi: 10.1016/j.stam.2004.06.002.

X. W. Sun and H. S. Kwok, “Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition,” J Appl Phys, vol. 86, no. 1, pp. 408–411, Jan. 1999, doi: 10.1063/1.370744.

F. T. Thema, E. Manikandan, M. S. Dhlamini, and M. Maaza, “Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract,” Mater Lett, vol. 161, pp. 124–127, Nov. 2015, doi: 10.1016/j.matlet.2015.08.052.

C. M. Sayes et al., “Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells,” Toxicological Sciences, vol. 92, no. 1, pp. 174–185, Jul. 2006, doi: 10.1093/toxsci/kfj197.

B. Kiss et al., “Investigation of micronized titanium dioxide penetration in human skin xenografts and its effect on cellular functions of human skin-derived cells,” Exp Dermatol, vol. 17, no. 8, pp. 659–667, Aug. 2008, doi: 10.1111/j.1600-0625.2007.00683.x.

N. Serpone, D. Dondi, and A. Albini, “Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products,” Inorganica Chim Acta, vol. 360, no. 3, pp. 794–802, Feb. 2007, doi: 10.1016/j.ica.2005.12.057.

S. Q. Wang, Y. Balagula, and U. Osterwalder, “Photoprotection: a Review of the Current and Future Technologiesd th_1289 31..47,” 2010.

A. P. Popov, A. V. Priezzhev, J. Lademann, and R. Myllylä, “Monte Carlo calculations of UV protective properties of emulsions containing TiO 2 , Si and SiO 2 nanoparticles,” in Advanced Laser Technologies 2007, SPIE, Sep. 2007, p. 702211. doi: 10.1117/12.804096.

N. S. Allen, M. Edge, A. Ortega, C. M. Liauw, J. Stratton, and R. B. Mcintyre, “Behaviour of nanoparticle (ultrafine) titanium dioxide pigments and stabilisers on the photooxidative stability of water based acrylic and isocyanate based acrylic coatings.” [Online]. Available: www.elsevier.com/locate/polydegstab

J. C. Jonsson, L. Karlsson, P. Nostell, G. A. Niklasson, and G. B. Smith, “Angle-dependent light scattering in materials with controlled diffuse solar optical properties,” in Solar Energy Materials and Solar Cells, Oct. 2004, pp. 427–439. doi: 10.1016/j.solmat.2004.02.048.

N. S. Allen, M. Edge, J. Verran, J. Stratton, J. Maltby, and C. Bygott, “Photocatalytic titania based surfaces: Environmental benefits,” Polym Degrad Stab, vol. 93, no. 9, pp. 1632–1646, Sep. 2008, doi: 10.1016/j.polymdegradstab.2008.04.015.

A. O. , P. M. , M. H. I. Barel, Handbook of Cosmetic Science and Tchnology, 3rd ed. New York : Informa Healthcare, 2009.

H. W. Lim, Z. Diana, D. Lim, and • Draelos, “Clinical Guide to Sunscreens and Photoprotection Edited by Clinical Guide to Sunscreens and Photoprotection,” 2008.

M. Skocaj, M. Filipic, J. Petkovic, and S. Novak, “Titanium dioxide in our everyday life; Is it safe?,” Radiology and Oncology, vol. 45, no. 4. Sciendo, pp. 227–247, Dec. 01, 2011. doi: 10.2478/v10019-011-0037-0.

M. Morsella, N. D’Alessandro, A. E. Lanterna, and J. C. Scaiano, “Improving the Sunscreen Properties of TiO2 through an Understanding of Its Catalytic Properties,” ACS Omega, vol. 1, no. 3, pp. 464–469, Sep. 2016, doi: 10.1021/acsomega.6b00177.

A. Salvador and A. Chisvert, “Sunscreen analysis: A critical survey on UV filters determination,” Anal Chim Acta, vol. 537, no. 1–2, pp. 1–14, Apr. 2005, doi: 10.1016/j.aca.2005.01.055.

BPOM RI, Peraturan Kepala Badan Pengawas Obat dan Makanan Republik -Indonesia-Nomor 17 Tahun 2022 tentang Persyaratan teknis Bahan Kosmetik. Jakarta: Kepala BPOM, 2022.

Z. A. Lewicka, A. F. Benedetto, D. N. Benoit, W. W. Yu, J. D. Fortner, and V. L. Colvin, “The structure, composition, and dimensions of TiO2 and ZnO nanomaterials in commercial sunscreens,” Journal of Nanoparticle Research, vol. 13, no. 9, pp. 3607–3617, Sep. 2011, doi: 10.1007/s11051-011-0438-4.

Z. A. Lewicka, W. W. Yu, B. L. Oliva, E. Q. Contreras, and V. L. Colvin, “Photochemical behavior of nanoscale TiO2 and ZnO sunscreen ingredients,” J Photochem Photobiol A Chem, vol. 263, pp. 24–33, 2013, doi: 10.1016/j.jphotochem.2013.04.019.

M. A. , M. aDavid F. P. and S. R. P. Mitchnick, “Microfine zinc oxide (Z-Cote) as a photostableUVA/UVB sunblock agent,” J Am Acad Dermatol, vol. 40, no. No 1, 1999.

S. R. Pinnell, D. Fairhurst, R. Gillies, M. A. Mitchnick, and N. Kollias, “Microfine Zinc Oxide is a Superior Sunscreen Ingredient to Microfine Titanium Dioxide,” 2000.

P. Kullavanijaya and H. W. Lim, “Photoprotection,” Journal of the American Academy of Dermatology, vol. 52, no. 6. Mosby Inc., pp. 937–958, 2005. doi: 10.1016/j.jaad.2004.07.063.

M. Volterrani, A. Minelli, M. Gaetani, N. Grossi, S. Magni, and L. Caturegli, “Reflectance, absorbance and transmittance spectra of bermudagrass and manilagrass turfgrass canopies,” PLoS One, vol. 12, no. 11, Nov. 2017, doi: 10.1371/journal.pone.0188080.




DOI: http://dx.doi.org/10.24036/15007171074