The Effect of Compositional Optical Analysis of ZnO/TiO2 Composites In a Sunscreen Product

Maritza Syalsabilla - Department of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Fuad Sofaturahman - Department of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Mira Syuriyani - Department of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Lia Septiana - Department of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Nadia Aryani - Department of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Riri Jonuarti - Department of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Ratnawulan - Department of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Rahmat Hidayat - Department of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131

Abstract


TiO2 and ZnO are active components in commercialized physical sunscreens that have a broad protective spectrum, which includes UVB and UVA. The combination of ZnO/TiO2 composites has more effective performance in blocking Ultra Violet rays in a wide wavelength range compared to ZnO or TiO2 alone. However, the high refractive index of TiO2 can cause a white cast. To solve the issue, a cream was created by incorporating antioxidants such as Virgin Coconut Oil (VCO). The purpose of this study is to determine the effect of the ZnO/TiO2 composite optical composition on visible and ultra violet light. Three composition comparisons were investigated in the study: ZnO/TiO2 10% added VCO, ZnO/TiO2 5% added VCO, and ZnO/TiO2 5% without VCO. UV-vis spectroscopy characterization showed that the ZnO/TiO2 composite absorbed more effectively in the ultra violet range than in visible light, and the greatest absorption and maximum reflectance are in the UVA1 range. The higher the concentration of ZnO/TiO2 in the cream composition, the higher the cream's absorption and reflection peaks. The reflectance in the visible light region is low, between 30% and 40%, implying that visible light passes through the sunscreen cream 70% to 80% of the time. As a result, the higher the ultra violet reflectance of the physical sunscreen cream, the lower the transparency. The higher the concentration of ZnO/TiO2, the greater the band gap value of the physical sunscreen, in the range of 3.1–3.5 eV

Full Text:

PDF

References


J. D. Orazio, S. Jarrett, A. Amaro-ortiz, and T. Scott, “UV Radiation and the Skin,” Int. J. Mol. Sci, vol. 14, pp. 12222–12248, 2013, doi: 10.3390/ijms140612222.

J. Krutmann, “Ultraviolet A radiation-induced biological effects in human skin: Relevance for photoaging and photodermatosis,” J. Dermatol. Sci., vol. 23, no. SUPPL. 1, pp. 22–26, 2000, doi: 10.1016/S0923-1811(99)00077-8.

E. Dupont, J. Gomez, and D. Bilodeau, “Beyond UV radiation: A skin under challenge,” Int. J. Cosmet. Sci., vol. 35, no. 3, pp. 224–232, 2013, doi: 10.1111/ics.12036.

R. Jonuarti, F. Haryanto, and Suprijadi, “Preliminary investigation of boron nitride nanotubes as an active material of sunblock,” J. Phys. Conf. Ser., vol. 1876, no. 1, 2021, doi: 10.1088/1742-6596/1876/1/012007.

S. Pavel, “Light therapy (with UVA-1) for SLE patients: Is it a good or bad idea?,” Rheumatology, vol. 45, no. 6, pp. 653–655, 2006, doi: 10.1093/rheumatology/kel063.

G. P. Dransfield, “Inorganic sunscreens,” Radiat. Prot. Dosimetry, vol. 91, no. 1–3, pp. 271–273, 2000, doi: 10.1093/oxfordjournals.rpd.a033216.

O. P. Egambaram, S. Kesavan Pillai, and S. S. Ray, “Materials Science Challenges in Skin UV Protection: A Review,” Photochemistry and Photobiology, vol. 96, no. 4. Blackwell Publishing Inc., pp. 779–797, Jul. 01, 2020. doi: 10.1111/php.13208.

M. Battistin et al., “A new approach to UV protection by direct surface functionalization of TiO2 with the antioxidant polyphenol dihydroxyphenyl benzimidazole carboxylic acid,” Nanomaterials, vol. 10, no. 2, pp. 1–19, 2020, doi: 10.3390/nano10020231.

B. L. Diffey, P. R. Tanner, P. J. Matts, and J. F. Nash, “In vitro assessment of the broad-spectrum ultraviolet protection of sunscreen products,” J. Am. Acad. Dermatol., vol. 43, no. 6, pp. 1024–1035, 2000, doi: 10.1067/mjd.2000.109291.

H. W. L. Samantha L. Schneider, “A Review Of Inorganic UV Filters Zinc Oxide and Titanium Dioxide.” Photodermatol Photoimmunol Photomed, pp. 442–446, 2019.

H. Pratt et al., “UV imaging reveals facial areas that are prone to skin cancer are disproportionately missed during sunscreen application,” PLoS One, vol. 12, no. 10, pp. 1–14, 2017, doi: 10.1371/journal.pone.0185297.

W. Lyu, M. Qian, and F. Yang, “Nanoparticles in sunscreen: exploration of the effect and harm of titanium oxide and zinc oxide,” Highlights Sci. Eng. Technol., vol. 13, pp. 155–162, 2022, doi: 10.54097/hset.v13i.1345.

R. Jonuarti, T. D. . Wungu, and F. Haryanto, “Gel tabir surya berbahan aktif titanium dioksida dengan beberapa variasi perbandingan konsentrasi dalam carbopol (1% b/b).,” Pros. Semin. Nas. Fis., vol. 5.0, pp. 391–396, 2019.

Food and Drug Administration (US), “Sunscreen Drug Products for Over-the-Counter Human Use,” Federal Register, 2019. https://www.federalregister.gov/documents/2019/02/26/2019-03019/sunscreen-drug-products-for-over-the-counter-human-use (accessed Jun. 23, 2023).

G. Tortini et al., “Criticisms in the Development of High-Protection and Broad-Spectrum ‘Natural/Organic’ Certifiable Sunscreen,” Cosmetics, vol. 9, no. 3, pp. 1–18, 2022, doi: 10.3390/cosmetics9030056.

M. H. Brill and M. Vik, “Encyclopedia of Color Science and Technology,” Encycl. Color Sci. Technol., no. January, 2020, doi: 10.1007/978-3-642-27851-8.

B. C. Jayati, R. Annisa, A. F. Firdausy, and ..., “Effect of Addition Virgin Coconut Oil (VCO) on Physical Stability and SPF Value of Sunscreen Cream Combination of Zinc Oxide and Titanium Dioxide,” Proc. …, pp. 8–14, 2021, [Online]. Available: http://conferences.uin-malang.ac.id/index.php/planar/article/view/1453

M. M. Khan, S. A. Ansari, M. I. Amal, J. Lee, and M. H. Cho, “Highly visible light active Ag@TiO2 nanocomposites synthesized using an electrochemically active biofilm: A novel biogenic approach,” Nanoscale, vol. 5, no. 10, pp. 4427–4435, 2013, doi: 10.1039/c3nr00613a.

M. Volterrani, A. Minelli, M. Gaetani, N. Grossi, S. Magni, and L. Caturegli, “Reflectance , absorbance and transmittance spectra of bermudagrass and manilagrass turfgrass canopies,” pp. 1–13, 2017.

Jumardin, A. Maddu, K. Santoso, and Isnaeni, “Karakteristik Sifat Optik Nanopartikel Karbon (Carbon Dots) Dengan Metode Uv-Vis Drs (Ultraviolet-Visible Diffuse Reflectance Spectroscopy),” JFT J. Fis. dan Ter., vol. 9, no. 1, pp. 1–15, 2022, doi: 10.24252/jft.v9i1.28815.

D. Montesano, L. Cossignani, G. D’Arco, M. S. Simonetti, and P. Damiani, “Pure lycopene from tomato preserves extra virgin olive oil from natural oxidative events during storage,” JAOCS, J. Am. Oil Chem. Soc., vol. 83, no. 11, pp. 933–941, 2006, doi: 10.1007/s11746-006-5049-3.

J. J. Reinosa, P. Leret, C. M. Álvarez-Docio, A. Del Campo, and J. F. Fernández, “Enhancement of UV absorption behavior in ZnO-TiO2composites,” Bol. la Soc. Esp. Ceram. y Vidr., vol. 55, no. 2, pp. 55–62, 2016, doi: 10.1016/j.bsecv.2016.01.004.

J. J. Reinosa, C. M. Á. Docio, V. Z. Ramírez, and J. F. F. Lozano, “Hierarchical nano ZnO-micro TiO2 composites: High UV protection yield lowering photodegradation in sunscreens,” Ceram. Int., vol. 44, no. 3, pp. 2827–2834, 2018, doi: 10.1016/j.ceramint.2017.11.028.




DOI: http://dx.doi.org/10.24036/14929171074