Analysis of Liquefaction Potential in Sungai Limau District Padang Pariaman Regency Using the Multichannel Analysis of Surface Wave (MASW) Method

Angeline Rorensia - Departement of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Syafriani - Departement of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Hamdi - Departement of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Akmam - Departement of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Letmi Dwiridal - Departement of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131

Abstract


Sungai Limau is one of the sub-districts in Padang Pariaman Regency which was badly damaged by the earthquake on 30 September 2009. Geologically, the Sungai Limau area is included in the category of cambisol soil types in the form of layers of sand, making it vulnerable to liquefaction due to earthquakes. This research was conducted to analyze the liquefaction potential using the Multichannel Analysis of Surface Wave (MASW) method. The MASW method can produce 2D Vs profiles to describe the structure and types of rock-forming materials at each depth and layer. This method can detect underground surfaces Vs to a depth of 30 meters. Data collection was conducted at Sungai Limau using the sysmatrack-MAE tool with 4 observation tracks. Each measurement uses a distance between geophones of 4 meters. The Vs results from MASW will be compared with the classification of soil types from UBC 1997. The average results of the shear wave velocity at a depth of 30 m (Vs30) in this study are 322.9 m/s for the first track, 303 m/s for the second track, 311 m /s for the third and fourth track. The four tracks fall into the same classification, namely medium soil type (class D). The results of the liquefaction potential analysis using the MASW method show that the first line has a high level of liquefaction potential in the third layer with a value of Vs 337 m/s (class D). The second track has a high level of liquefaction potential in the third layer with a value of Vs 314 m/s (class D). The third track has a fairly high level of liquefaction potential in the second layer with a value of Vs 209 m/s (class D). The fourth track has a high level of liquefaction potential in the second layer with a value of Vs 198 m/s (class D). The fourth and fifth layers on the entire track have no liquefaction potential with Vs ranging from 400-550 m/s (Class C).

Full Text:

PDF

References


Metrikasari, R. & Achmad C., “Pemodelan Risiko GempaBumi di Pulau Sumatera Menggunakan Model Inhomogeneous Neyman-Scott Cox Process,” Jurnal Sains dan Seni ITS, Vol. 9, no. 2, 2337-3520, 2020.

Setyonegoro, W., “Gempabumi Padang 30 September 2009 dan Potensi Tsunaminya,” Buletin Meterorologi Klimatologi dan Geofisika, Vol. 7, no.3, 163-171, 2013.

FAO-Unesco, FAO-Unesco Soil Map of the World 1:5,000,000. Paris: Unesco, 2007.

Rosyidi, Sri. A.P., Analisis Potensi Likuifaksi Tanah Berbasis Teknik Gelombang Seismik. Yogyakarta: The Phinisi Press, 2020.

Muntohar, Agus Setyo., "Studi parametrik potensi Likuifaksi dan penurunan permukaan tanah berdasarkan Uji Sondir," Prosiding Pertemuan Ilmiah Tahunan Himpunan Ahli Teknik Tanah Indonesia (PIT HATTI) ke-16 Jakarta, 139-144, 2012.

Agung, M. Darma, and Rusnardi Rahmat Putra., "Evaluasi Potensi Likuifaksi Di Kota Padang Berdasarkan Data Investigasi Tanah Dan Hubungannya Dengan Frekuensi Natural Tanah." Jurnal Applied Science in Civil Engineering 2.4, Vol. 2, no. 4, 412-419, 2021.

J. Xia, R. D. Miller, C. B. Park, dan J. Ivanov, “Construction of 2‐D Vertical Shear‐Wave Velocity Field by the Multichannel Analysis of Surface Wave Technique,” Jan 2000, 1197–1206. doi: 10.4133/1.2922726.

Andrus, Ronald D., and Kenneth H. Stokoe II. "Liquefaction resistance of soils from shear-wave velocity," Journal of geotechnical and geoenvironmental engineering, Vol. 126, no. 11, 1015-1025, 2000.

Seed, H.B., Idriss, I.M., “Simplified procedure for evaluating soil liquefaction potential,” J. Soil Mech. Found. Div. ASCE, Vol. 97, no. 9, 1249–1273, 1971.

C. B. Park, R. D. Miller, dan J. Xia, “Multichannel analysis of surface waves,” Geophysics, vol. 64, no. 3, 800–808, 1999, doi: 10.1190/1.1444590.

Karl, J.H, An introduction to digital signal processing. London: Academic Press, 1989.

Monica, F., Pujiastuti, D., & Afdal, A. “Identifikasi Potensi Likuifaksi di Kecamatan Sungai Limau Kabupaten Padang Pariaman dengan Metode Geolistrik 2D Tahanan Jenis,” Jurnal Fisika Unand, Vol. 9, no. 4, 443–449, 2020, doi:10.25077/jfu.9.4.443-449.2020

Kusuma, D. T., Fast Fourier Transform (FFT) Dalam Transformasi Sinyal Frekuensi Suara Sebagai Upaya Perolehan Average Energy (AE). Petir, Vol. 14, no. 1, 28–35, 2020, doi:10.33322/petir.v14i1.1022

Lantu, Aswad, S., & Marjiyono, Pemetaan Wilayah Rawan Bencana Gempabumi Berdasarkan Data Mikrotremor dan Data Bor. Journal Geocelebes, Vol. 2, no. 1, 20-30, 2018.

UBC., “Uniform building code,” In International Conference of Building Officials, 1997.




DOI: http://dx.doi.org/10.24036/14326171074