IoT-based Wind Speed Measurement System

Alif Putri - Departement of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Yulkifli - Departement of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Syafriani - Departement of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Yenni Darvina - Departement of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131

Abstract


Weather is the state of the atmosphere at any time which is expressed by the high and low values of the weather element parameters. Observations of weather elements are carried out so that they can be used as needed in the future. This study aims to determine the performance and design specifications of a wind speed measurement system based on the internet of things with a smartphone display. This measuring instrument is built using a wind speed sensor, namely a wind speed sensor as a speed sensor, Arduino Uno to connect sensor readings to NodeMCU, the NodeMCU ESP8266 microcontroller which is used to access the internet network so that it can be sent to the thingspeak server and data from thingspeak is displayed on an android smartphone using inventory application. The results of measuring, testing, and analyzing wind speed using the Internet of Things and a smartphone display, namely Arduino Uno, process the wind speed detected by the wind speed sensor before sending it to NodeMCU ESP8266. After that, the data is sent to the thingspeak server which will be displayed on the Android phone. Second, the average accuracy of wind speed measurements on the first, second, and third days were 95.96%, 94.83%, 96.16%, and the average accuracy of wind speed measurements on the first, second, and third days were 92.85%, 94.43% and 96%. 

Full Text:

PDF

References


M. Suradam, R. Reinaldo, E. Andri, and I. Sugihartono, “Perancangan Sistem Telemetri Akuisisi Data Cuaca Dengan XBee Pro-S2,” no. 1600 m, pp. 102–106, 2013.

B. S. Rafdito Harisuryo, Sumardi, “Sistem Pengukuran Data Suhu dan Tekanan Udara Dengan Telemetri Berbasis Frekuensi Radio,” Transient, vol. 4, no. 3, p. 9, 2015.

A. Khosravi, R. N. N. Koury, L. Machado, and J. J. G. Pabon, “Prediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system,” Sustain. Energy Technol. Assessments, vol. 25, no. December 2017, pp. 146–160, 2018, doi: 10.1016/j.seta.2018.01.001.

N. Yanti, Y. Yulkifli, and Z. Kamus, “Pembuatan Alat Ukur Kelajuan Angin Menggunakan Sensor Optocoupler Dengan Display Pc,” Sainstek J. Sains dan Teknol., vol. 7, no. 2, p. 95, 2016, doi: 10.31958/js.v7i2.131.

T. N. Robby, M. Ramdhani, and C. Ekaputri, “Alat Ukur Kecepatan Angin, Arah Angin, dan Ketinggian,” vol. 4, no. 2, pp. 1457–1466, 2017.

E. Safrianti and H. Surya, “Perancangan Alat Ukur Kecepatan Dan Arah Angin,” J. Rekayasa Elektr., vol. 9, no. 1, pp. 30–35, 2010.

Y. Pramono and W. Syafriadi, “Monitoring Data Kecepatan dan Arah Angin Secara Real Time Melalui Web,” vol. 0, no. 02, pp. 221–226, 2016.

O. Derek, D. Elia, K. Allo, and N. M. Tulung, “Rancang Bangun Alat Monitoring Kecepatan Angin Dengan Koneksi Wireless Menggunakan Arduino Uno,” vol. 5, no. 4, pp. 1–7, 2016.

M. L. Mahar, A. Rafi, and A. Tahtawi, “Perancangan dan Realisasi Anemometer Digital untuk Aplikasi Sistem Peringatan Dini,” vol. 2, no. 2, pp. 91–96, 2017.

Yulkifli, Z. Afandi, and Yohandri, “Development of Gravity Acceleration Measurement Using Simple Harmonic Motion Pendulum Method Based on Digital Technology and Photogate Sensor,” IOP Conf. Ser. Mater. Sci. Eng., vol. 335, no. 1, 2018, doi: 10.1088/1757-899X/335/1/012064.

Y. Yulkifli, Y. Yohandri, and Z. Affandi, “Pembuatan Sistem Pengiriman Data Menggunakan Te lemetri

Wireless untuk Detektor Getaran Mesin Dengan Sensor Fluxgate,” Setrum Sist. KendaliTenaga elektronika -telekomunikasi-komputer, vol. 5, no. 2, p. 57, 2016, doi: 10.

G. Marques, N. Miranda, A. K. Bhoi, B. Garcia-zapirain, S. Hamrioui, and I. de la T. Díez, “Internet of things and enhanced living environments: Measuring and mapping air quality using cyber-physical systems and mobile computing technologies,” Sensors (Switzerland), vol. 20, no. 3, pp. 1–20, 2020, doi: 10.3390/s20030720.

M. F. Dvali and M. D. Belonin, “Prospects for deep and ultradeep oil and gas deposits in u.s.s.r.,” Int. Geol. Rev., vol. 8, no. 6, pp. 665–675, 1966, doi: 10.1080/00206816609474324.

Q. Zhou and J. Zhang, “Internet of things and geography review and prospect,” Proc. - 2011 Int. Conf. Multimed. Signal Process. C. 2011, vol. 2, pp. 47–51, 2011, doi: 10.1109/CMSP.2011.101.

D. Parida, A. Behera, J. K. Naik, S. Pattanaik, and R. S. Nanda, “Real-time environment monitoring system using ESP8266 and thingspeak on internet of things platform,” 2019 Int. Conf. Intell. Comput. Control Syst. ICCS 2019, no. Iciccs, pp. 225–229, 2019, doi: 10.1109/ICCS45141.2019.9065451.




DOI: http://dx.doi.org/10.24036/14314171074