The Effect of The Addition of Seaweed Charcoal (Sargasum sp.) With Pure Graphite on The Absorptive Properties of Graphene Oxide Syntheses Using the Hummer Modification Method

Dicko Syahdan - Departement of physics, Universitas Negeri Padang, Jl Prof. Dr. Hamka Air Tawar Padang 25131, Indonesia
- Ramli - Departement of physics, Universitas Negeri Padang, Jl Prof. Dr. Hamka Air Tawar Padang 25131, Indonesia
Rahmat Hidayat - Departement of physics, Universitas Negeri Padang, Jl Prof. Dr. Hamka Air Tawar Padang 25131, Indonesia
Yenni Darvina - Departement of physics, Universitas Negeri Padang, Jl Prof. Dr. Hamka Air Tawar Padang 25131, Indonesia

Abstract


Graphene Oxide or Graphene Oxide (GO) Is a graphite oxide in the form of a monolayer obtained from exfoliating graphite oxide into sheets through a sonication or stirring process. In this study, the material used was a mixture of pure graphite and seaweed (Sargasum sp). Seaweed (Sargasum sp) is used as a mixture of pure graphite because the carbon content in seaweed (Sargasum sp) is good enough to reduce the use of pure graphite as the main ingredient in making graphene oxide. There are are 4 variations of composition with the aim of seeing the best results from these five compositions, namely the composition between Graphite and Sargassum sp, namely 70%: 30%, 60% ; 40%, and 50% : 50%. The research results obtained showed that graphene oxide had been successfully synthesized from the addition of seaweed charcoal because of some of the typical properties of graphene oxide. By X-ray diffractogram at an angle of 2, it was found to contain C-O, C=O, C=C, and O-H functional groups. In the VNA test, it obtained high reflection loss and adsorption coefficient values in a mixture of 50% pure graphite: 50% seaweed with a reflection loss value of -7.40 dB and an adsorption coefficient of 0.57342


Full Text:

PDF

References


A. Fauzi Kurniawan, “Sintesis komposit grafena oksida terduksi (rgo) hasil pembakaran tempurung kelapa tua dengan seng oksida (zno) sebagai superkapasitor,” 2016.

L. R. Dewi, W. Widanarto, and M. Effendi, “Pengaruh temperatur sintering terhadap komposisi, sifat magnetik dan absorpsi gelombang mikro komposit nano zinc-ferit,” J. Teras Fis., vol. 2, no. 1, p. 18, Feb. 2019, doi: 10.20884/1.jtf.2019.2.1.1514.

A. Syamsir, “Sintesis nanokomposit pani/tio 2 /karbon sebagai penyerap gelombang mikro,” J. Fis. Unand, vol. 1, no. 1, 2012.

A. A. Yarangga, C. Danisworo, A. Harjanto Magister, T. Geologi, U. " Veteran, and " Yogyakarta1, “Prosiding Seminar Nasional XII "Rekayasa Teknologi Industri dan Informasi,” 2017.

F. Zainuddin and M. M. Rusdani, “Performa Rumput Laut Kappaphycus Alvarezii dari Maumere dan Tembalang Pada Budidaya Sistem Longline Performance of Kappaphycus alvarezii Seaweed from Maumere and Tembalang in Longline System Cultivation,” J. Aquac. Sci., vol. 3, no. 1, pp. 116–127, 2018.

Suparmi and Bahri A, “Mengenal Potensi Rumput Laut : Kajian Pemanfaatan Sumber Daya Rumput Laut Dari Aspek Industri Dan Kesehatan,” 2020.

Rank, “P.Kaladharan.”

S. U. Chaedir, Kandungan Karbon pada Beberapa Spesies Makroalga dengan Pengaruh Perbedaan Suhu. bandung: Universitas Padjajaran, 2017.

E. D. Hutapea et al., “Biomass and carbon storage of Sargassum sp. in Poncan Gadang Island, North Sumatera Province,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics, 2022. doi: 10.1088/1755-1315/977/1/012122.

A. King, G. Johnson, D. Engelberg, W. Ludwig, and J. Marrow, “Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal,” Science (80-. )., vol. 321, no. 5887, pp. 382–385, Jul. 2008, doi: 10.1126/science.1156211.

P. Ranjan, S. Agrawal, A. Sinha, T. R. Rao, J. Balakrishnan, and A. D. Thakur, “A Low-Cost Non-explosive Synthesis of Graphene Oxide for Scalable Applications,” Sci. Rep., vol. 8, no. 1, Dec. 2018, doi: 10.1038/s41598-018-30613-4.

F. Li, X. Jiang, J. Zhao, and S. Zhang, “Graphene oxide: A promising nanomaterial for energy and environmental applications,” Nano Energy, vol. 16. Elsevier Ltd, pp. 488–515, Sep. 01, 2015. doi: 10.1016/j.nanoen.2015.07.014.

W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, “Carrier scattering, mobilities and electrostatic potential in mono-, bi-and tri-layer graphenes,” 2009.

S. N. Alam, N. Sharma, and L. Kumar, “Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO)*,” Graphene, vol. 06, no. 01, pp. 1–18, 2017, doi: 10.4236/graphene.2017.61001.

J. Chen, B. Yao, C. Li, and G. Shi, “An improved Hummers method for eco-friendly synthesis of graphene oxide,” Carbon N. Y., vol. 64, pp. 225–229, Nov. 2013, doi: 10.1016/j.carbon.2013.07.055.

K. Y. Perez-Salcedo, S. Ruan, J. Su, X. Shi, A. M. Kannan, and B. Escobar, “Seaweed-derived KOH activated biocarbon for electrocatalytic oxygen reduction and supercapacitor applications,” J. Porous Mater., vol. 27, no. 4, pp. 959–969, Aug. 2020, doi: 10.1007/s10934-020-00871-7.

M. Hapsari, A. H. Cahyana, S. H. Oktavia, and A. R. Liandi, “Synthesis of spirooxindole-pyrrolizidine compounds using fe3o4-go catalyst and their bioactivity assays,” Rasayan J. Chem., vol. 13, no. 4, pp. 2317–2324, Oct. 2020, doi: 10.31788/RJC.2020.1345583.

F. Fauzi, D. W. Sunu, and B. Dwandaru, “Analisis Karakteristik Graphene Oxide dan Reduksinya melalui Gelombang Mikro,” 2021. [Online]. Available: https://journal.unnes.ac.id/nju/index.php/jf/index

A. Y. Nugraheni, M. Nashrullah, F. A. Prasetya, F. Astuti, and Darminto, “Study on phase, molecular bonding, and bandgap of reduced graphene oxide prepared by heating coconut shell,” in Materials Science Forum, Trans Tech Publications Ltd, 2015, pp. 285–289. doi: 10.4028/www.scientific.net/MSF.827.285.

M. I. Ramadhan, W. Widanarto, and S. Sunardi, “Pengaruh Temperatur Sintering Terhadap Struktur dan Sifat Magnetik Ni2+- Barium Ferit sebagai Penyerap Gelombang Mikro,” J. Teras Fis., vol. 1, no. 1, p. 23, Feb. 2018, doi: 10.20884/1.jtf.2018.1.1.567.

M. . R. G. & Y. Fadhilah, “Pengaruh Suhu Sintering Pada Penyerapan Gelombang Mikro Nanokomposit NiFe2O 4 / pvdf untuk material penyerap radar,” Pillar Phys. , vol. 98–103, 2019.

R. Panwar, S. Puthucheri, V. Agarwala, and D. Singh, “An efficient use of waste material for development of cost-effective broadband radar wave absorber,” J. Electromagn. Waves Appl., vol. 29, no. 9, pp. 1238–1255, Jun. 2015, doi: 10.1080/09205071.2015.1044125.




DOI: http://dx.doi.org/10.24036/14304171074