Micro Structure Analysis of Graphne Oxides from Sawn Waste Synthesis using The Modified Hummer Method

Gina Fadilah NST - Department of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Ramli - Department of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Yenni Darvina - Department of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Fadhila Jhora - Department of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131

Abstract


The manufacture of graphene oxide material based on sawmill waste charcoal has many applications in the field of technology, one of which is microwave absorption. Sawmill waste as the main ingredient is an effort to improve the processing of abundant sawmill waste. This study aims to analyze the microstructural properties of graphene oxide from sawmill waste synthesized by the modified hummer method. Graphene oxide synthesis was carried out using a modified hummer method which was characterized using a Scanning Electron Microscope (SEM), X-ray Diffraction (XRD ), and Fourier Transform Infrared (FTIR). Based on the results  from SEM, the temperatures of 250˚C and 400˚C are perfect graphene oxide blocks. At 300˚C, 350˚C, and  450˚C in the form of sheets. The best results on sem were obtained at 400C with an average diameter of 31.1nm. Based on the results of XRD, it showed a crystal structure in the form of graphene oxide 250˚C, 300˚C, 350˚C, 400˚C, and 450˚C namely Orthorhombic, Cubic, Tetragonal, Hexagonal, and Cubic with the best results at 400˚C where the size The largest average crystal is 53.1 nm. Based on the FTIR results, it contains C, H, and O bonds in the presence of C=O, C=C, O-H, and C-H bonds


Full Text:

PDF

References


K. Sa’diyah, P. H. Suharti, N. Hendrawati, F. A. Pratamasari, and O. M. Rahayu, “Pemanfaatan Serbuk Gergaji Kayu sebagai Karbon Aktif melalui Proses Pirolisis dan Aktivasi Kimia,” CHEESA Chem. Eng. Res. Artic., vol. 4, no. 2, p. 91, 2021, doi: 10.25273/cheesa.v4i2.8589.91-99.

O. Paris, C. Zollfrank, and G. A. Zickler, “Decomposition and carbonisation of wood biopolymers - A microstructural study of softwood pyrolysis,” Carbon N. Y., vol. 43, no. 1, pp. 53–66, 2005, doi: 10.1016/j.carbon.2004.08.034.

J. N. Lalena, D. A. Cleary, E. E. Carpenter, and N. F. Dean, Inorganic Materials Synthesis and Fabrication. 2007. doi: 10.1002/9780470191576.

M. Inagaki and F. Kang, “Introduction,” Mater. Sci. Eng. Carbon Fundam., pp. 1–15, 2014, doi: 10.1016/b978-0-12-800858-4.00001-2.

M. M. Hantel, “Graphite Oxide and Graphene Oxide Based Electrode Materials for Electrochemical Double Layer Capacitors presented by,” no. 21212, pp. 1–339, 2013.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nanosci. Technol. A Collect. Rev. from Nat. Journals, pp. 11–19, 2009, doi: 10.1142/9789814287005_0002.

M. Cai, D. Thorpe, D. H. Adamson, and H. C. Schniepp, “Methods of graphite exfoliation,” J. Mater. Chem., vol. 22, no. 48, pp. 24992–25002, 2012, doi: 10.1039/c2jm34517j.

S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, “Hydrazine-reduction of graphite- and graphene oxide,” Carbon N. Y., vol. 49, no. 9, pp. 3019–3023, 2011, doi: 10.1016/j.carbon.2011.02.071.

R. Hummers, W. S.; Offeman and E., “Preparation of Graphitic Oxide,” J. Am. Chem. Soc., vol. 208, no. 1937, p. 1937, 1957, [Online]. Available: https://pubs.acs.org/sharingguidelines

T. H. E. Royal, S. Academy, and O. F. Sciences, “Nobel Prize ® and the Nobel Prize ® medal design mark are registrated trademarks of the Nobel Foundation Scientific Background on the Nobel Prize in Physics 2010 GRAPHENE compiled by the Class for Physics of the Royal Swedish Academy of Sciences,” vol. 50005, no. October, pp. 0–10, 2010, [Online]. Available: https://selectra.co.uk/sites/selectra.co.uk/files/pdf/advanced-physicsprize2010.pdf%0Ahttps://www.nobelprize.org/uploads/2018/06/advanced-physicsprize2010.pdf

R. Ramli, R. Jonuarti, and A. Hartono, “Analisis Struktur Nano Dari Lapisan Tipis Cobalt Ferrite Yang Dipreparasi Dengan Metode Sputtering,” EKSAKTA Berk. Ilm. Bid. MIPA, vol. 18, no. 01, pp. 46–53, 2017, doi: 10.24036/eksakta/vol18-iss01/16.

Fathia, A. (2018). Sintesis dan Karakterisasi Graphene Oxide Terkombinasi Nanopartikel Perak dalam Fase Cair. Yogyakarta: Universitas Negeri Yogyakarta

T. Somanathan, K. Prasad, K. K. Ostrikov, A. Saravanan, and V. M. Krishna, “Graphene oxide synthesis from agro waste,” Nanomaterials, vol. 5, no. 2, pp. 826–834, 2015, doi: 10.3390/nano5020826.

R. F. Suwandana and D. Susanti, “Analisis Pengaruh Massa Reduktor Zinc Terhadap Sifat Kapasitif Superkapasitor Material Graphene,” J. Tek. ITS, vol. 4, no. 1, pp. 95–100, 2015.

I. C. Pradana and D. Sunsanti, “Analisa Pengaruh Komposisi Graphene - TiO 2 terhadap Unjuk Kerja Dye Sensitized Solar Cell (DSSC),” J. Tek. POMITS, vol. 2, no. 1, pp. 83–88, 2013.




DOI: http://dx.doi.org/10.24036/14256171074