Effect of Addition of Seaweed (Sargassum Sp) Charcoal with Pure Graphite on The Optical Properties of Graphene Oxide Synthesized by the Modified Hummer’S Method

Rega kurniawati - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Ramli - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Gusnedi - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Rahmat Hidayat - Departement of physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131

Abstract


Synthesis of graphene oxide from a mixture of pure Graphite and seaweed charcoal using a modified Hummers method was carried out with five variations of the composition, namely 100% graphite, 70% graphite– 30% seaweed, 60% graphite – 40% seaweed, 50% - 50%, 100% seaweed. From this experiment, it will be seen how adding seaweed with Graphite affects the optical properties of the resulting graphene oxide. Characterization was carried out using FTIR, XRD, and SEM, and for optical properties, a UV-Vis Spectrophotometer was used. The FTIR test results showed the presence of carbon (C), hydrogen (H), and oxygen (O) functional groups. The XRD test results showed the crystal size of graphene oxide, and the SEM test showed graphene oxide's morphology in the form of thin sheets and chunks. The FTIR, XRD, and SEM tests showed that adding seaweed with Graphite had no effect. The results of the UV-Vis Spectrophotometer test showed that the highest absorbance value was at a variation of 50% - 50%, namely 49.547 at a wavelength of 245 nm, while for the lowest energy gap value, namely the variation of 100% seaweed 2.2875 eV and the highest 100% graphite 4, 2393 eV, the energy gap shows that there is an influence, the more seaweed composition used, the lower the energy gap


Full Text:

PDF

References


W. F. Caspary, J. Schäffer, G. Brunner, G. Schmidt, and W. Creutzfeldt, “14C-aminopyrine- (pyramidone) respiratory test--a new quantitative liver function test,” Verh. Dtsch. Ges. Inn. Med., vol. 82 Pt 1, pp. 286–289, 1976, doi: 10.1007/978-3-642-85451-4_42.

A. S. Suparmi, “Kajian Pemanfaatan Sumber Daya Rumput Laut Dari Aspek Industri dan Kesehatan,” J. Maj. Ilm. Sultan Agung, vol. 44, no. 118, pp. 95–116, 2013.

ali rido Sri Sedjati, Suryono, Adi sentosa, Endang supriyantini, “Aktivitas Antioksidan dan Kandungan

Senyawa Fenolik Makroalga,” vol. 20, no. November, pp. 117–123, 2017.

I. Kusumaningrum, R. B. Hastuti, and S. Haryanti, “Pengaruh Perasan Sargassum crassifolium dengan Konsentrasi yang Berbeda terhadap Pertumbuhan Tanaman Kedelai (Glycine max (L) Merill),” Bul. Anat. dan Fisiol., vol. XV, no. 2, pp. 17–13, 2007.

S. N. Lim, P. C. K. Cheung, V. E. C. Ooi, and P. O. Ang, “Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum,” J. Agric. Food Chem., vol. 50, no. 13, pp. 3862–3866, 2002, doi: 10.1021/jf020096b.

H. Samee, Z. X. Li, H. Lin, J. Khalid, and Y. C. Guo, “Anti-allergic effects of ethanol extracts from brown seaweeds,” J. Zhejiang Univ. Sci. B, vol. 10, no. 2, pp. 147–153, 2009, doi: 10.1631/jzus.B0820185.

D. Saputra Lega Wira Made,Ariani Panti Risa, “Cookies Berkadar Serat Tinggi Substitusi Tepung Ampas Rumput Laut Dari Pengolahan Agar-Agar Kertas,” Bosaparis Pendidik. Kesejaht. Kel., vol. 10, no. 1, pp. 49–60, 2019, [Online]. Available: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjPj- Cvldb0AhX0UWwGHTE7BSgQFnoECAkQAQ&url=https%3A%2F%2Fejournal.undiksha.ac.id%2Fin dex.php%2FJJPKK%2Farticle%2Fdownload%2F22158%2F13778&usg=AOvVaw1czbfS6A_yRr7NW MqSpL4v

S. C. Ray, Application and Uses of Graphene. Elsevier Inc., 2015. doi: 10.1016/b978-0-323-37521- 4.00001-7.

I. R. Solo, M. Bukit, A. Z. Johannes, and R. K. Pingak, “Kajian Awal Sifat Optik Graphene Oxide Berbahan Dasar Arang Sekam Padi Dengan Metode Liquid Phase Exfoliation Menggunakan Alat Bantu Blender Dan Ultrasonic Cleaner,” J. Fis. Fis. Sains dan Apl., vol. 5, no. 2, pp. 145–148, 2020, [Online].

Available: https://ejurnal.undana.ac.id/FISA/article/view/3472/2289

D. C. Marcano et al., “Improved synthesis of graphene oxide,” ACS Nano, vol. 4, no. 8, pp. 4806–4814, 2010, doi: 10.1021/nn1006368.

A. Redinger and S. Siebentritt, “Loss Mechanisms in Kesterite Solar Cells,” Copp. Zinc Tin Sulfide- Based Thin-Film Sol. Cells, vol. 627, pp. 363–386, 2015, doi: 10.1002/9781118437865.ch16.

H. Randa, “Pengaruh Waktu Pemblenderan Terhadap Spektrum UV-Vis Material Grafena Oksida

Berbahan Dasar Serbuk Grafit,” pp. 1–67, 2021.

Q. Lai, S. Zhu, X. Luo, M. Zou, and S. Huang, “Ultraviolet-visible spectroscopy of graphene oxides,”

AIP Adv., vol. 2, no. 3, pp. 3–8, 2012, doi: 10.1063/1.4747817.

M. Yi and Z. Shen, “Kitchen blender for producing high-quality few-layer graphene,” Carbon N. Y., vol. 78, pp. 622–626, 2014, doi: 10.1016/j.carbon.2014.07.035.

D. Bhatnagar, S. Singh, S. Yadav, A. Kumar, and I. Kaur, “Experimental and theoretical investigation of relative optical band gaps in graphene generations,” Mater. Res. Express, vol. 4, no. 1, 2017, doi: 10.1088/2053-1591/4/1/015101.

H. C. Hsu et al., “Graphene oxide as a promising photocatalyst for CO2 to methanol conversion,”

Nanoscale, vol. 5, no. 1, pp. 262–268, 2013, doi: 10.1039/c2nr31718d.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nanosci. Technol. A Collect. Rev. from Nat. Journals, pp. 11–19, 2009, doi: 10.1142/9789814287005_0002.

Y. Oktaviani and Astuti, “Sintesis Lapisan Tipis Semikonduktor dengan Bahan Dasar Tembaga (Cu) Menggunakan Chemical Bath Deposition,” J. Fis. Unand, vol. 3, no. 1, pp. 53–58, 2014.




DOI: http://dx.doi.org/10.24036/14238171074