Scanning Electron Microscopy for Nanostructure Analysis of Hybrid Multilayer Coating

Debi Rianto - Department of Physics, Durham University, South Rd, Durham, DH1 3LE

Abstract


Scanning Electron Microscope (SEM) has been used in various studies to retrieve detailed information on nanomaterial structure. This study is an effort to propose SEM as the proper tool to investigate the properties of Hybrid Multilayer Coating as our model. The analysis should include nanoparticle size and its distribution on the surface, the thickness of the layers, the chemical composition and the crystal grain size in the layers. Several methods in SEM are beneficial to characterize these features are topography image, compositional image, X-Ray Spectrometry and Electron Backscattered Diffraction pattern. This technique also has several limitations ranging from chemical sensitivity, resolution to sample preparation

Full Text:

PDF

References


Goldstein, J. I., Newbury, D. E., Michael, J. R., Ritchie, N. W., Scott, J. H. J., & Joy, D. C, Scanning electron microscopy and X-ray microanalysis, Springer, 2017.

Leng, Y, Materials characterisation: introduction to microscopic and spectroscopic methods, John Wiley & Sons, 2009.

Gich, M., Fernández-Sánchez, C., Cotet, L. C., Niu, P., & Roig, A, Facile synthesis of porous bismuth–carbon nanocomposites for the sensitive detection of heavy metals, Journal of Materials Chemistry A, vol. 1, no. 37, page. 11410-11418, 2013.

Dou, F., Small, C., Provencher, F., Ferreira, J., Wang, X., Rezasoltani, E., ... & Zhang, X, Particle plasmon‐induced charge trapping at heterointerfaces in PCDTBT: PC70BM blends, Journal of Polymer Science Part B: Polymer Physics, vol. 55, no. 12, page. 940-947, 2017.

Thomas, R., Rao, K. Y., & Rao, G. M, Enhanced electrochemical performance of graphene nanosheet thin film anode decorated with tin nanoles. Materials Express, vol. 4, no. 1, page. 65-71, 2014.

Bahremandi-Tolou, N., Fathi, M., Monshi, A., Mortazavi, V., & Shirani, F, Preparation and corrosion behavior evaluation of amalgam/titania nano composite, Dental Research Journal, vol. 8, no. 5, 2012.

Nielsen, K., Persson, A., Beeaff, D., Ho̸gh, J., Mikkelsen, L., & Hendriksen, P. V, Initiation and Performance of a Coating for Countering Chromium Poisoning in a SOFC-stack, ECS Transactions, vol. 7, no.1, page. 2145-2154, 2007.

Su, P. G., & Huang, L. N, Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films. Sensors and Actuators B: Chemical, vol. 123, no.1, page. 501-507, 2007.

Erić, S. (2017). The application and limitations of the SEM-EDS method in food and textile technologies. Advanced Technologies, 6(2), 5-10.

Wilkinson, A. J., Meaden, G., & Dingley, D. J. (2006). High-resolution elastic strain measurement from electron backscatter diffraction patterns: New levels of sensitivity. Ultramicroscopy, 106(4-5), 307-313.

Humphreys, F. J. (2004). Characterisation of fine-scale microstructures by electron backscatter diffraction (EBSD). Scripta materialia, 51(8), 771-776.

Zhang, Y., Jiang, Z., Huang, J., Lim, L. Y., Li, W., Deng, J., ... & Chen, Z. (2015). Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Advances, 5(97), 79479-79510.

Fehse, M., Trócoli, R., Hernández, E., Ventosa, E., Sepúlveda, A., Morata, A., & Tarancón, A. (2018). An innovative multilayer pulsed laser deposition approach for LiMn2O4 thin film cathodes. Thin Solid Films, 648, 108-112.

Tiede, K., Boxall, A. B., Tear, S. P., Lewis, J., David, H., & Hassellöv, M. (2008). Detection and characterisation of engineered nanoparticles in food and the environment. Food additives and contaminants, 25(7), 795-821.

Eaton, P., Quaresma, P., Soares, C., Neves, C., de Almeida, M. P., Pereira, E., & West, P. (2017). A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles. Ultramicroscopy, 182, 179-190.




DOI: http://dx.doi.org/10.24036/14084171074