Effect of Calcination Temperature on Microstructure, Porosity and Hardness of Cao/Sio2 Nanocomposites for Bone Implants

Wardatul Ullya - Department of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Riri Jonuarti - Department of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Ratnawulan - Department of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131

Abstract


This research is a study on the effect of calcination temperature on microstructure, porosity, and hardness of CaO/SiO2 nanocomposites for bone implants made from natural materials of pensi shells and silica sand. The purpose of this study was to determine the effect of variations in calcination temperature on the morphological analysis of structural form, porosity, and hardness of CaO/SiO2 nanocomposites in samples for biomaterials and to determine whether CaO/SiO2 nanocomposites derived from pensi shells and quartz sand are possible to be applied as biomaterials. The results showed that the effect of variations in calcination temperature on the microstructure of bone implant samples was that the higher the calcination temperature would affect the microstructure's shape on the surface of the model where the surface formed was widening, and the grain size was getting smaller. In the porosity, it can be seen that there is diffusion between one grain and another. The grains melt with each other and close the pores from the outside, resulting in compaction at a temperature of 1000°C with a porosity value of 0.005% and the best hardness value of 4.8 kg/mm2.


Full Text:

PDF

References


Y. Widya Sari, N. Aisyah Nuzulia, A. Saputra, and A. B, Pengantar Biomaterial, Cetakan 1,. Bogor: PT Penerbit IPB Press, 2021.

Kemenristekdikti, “Inovasi Implan Tulang Buatan dalam Negeri Bisa Mengurangi Beban Impor,” Siaran Pers Ristek Dikti, 2017. https://ristekdikti.go.id/inovasi-implan-tulang-buatan-dalam-negeri-bisa-mengurangi-beban-impor/ (accessed Feb. 01, 2022).

A. Kurniawan, M. Nizar, M. Rijal, R. Bagas, and W. Setyarsih, “Studi Pengaruh Variasi Suhu Kalsinasi Terhadap Kekerasan Bentuk Morfologi, dan Analisis Porosiras Nanokomposit CAO/SiO2 Untuk Aplikasi Bahan Biomaterial,” J. Penelit. Fis. dan Apl., vol. 4, no. 2, p. 22, 2014, doi: 10.26740/jpfa.v4n2.p22-26.

H. Lukman. M., W., Yudyanto, “Artikel Sintesis biomaterial Komposit CaO-SiO2 Berbasis Material Alam (Batuan Kapur dan Pasir Kuarsa) dengan Variasi Suhu Pemanasan dan Pengaruhnya Terhadap Porositas, Kekerasan dan Mikrostruktur,” Univ. Negeri Malang, 2012, [Online]. Available: http://repository.um.ac.id/20586/

A. Lusi Zeswita and E. Safitri, “Karakter Morfometrik Pensi (Corbicula moltkiana Prime) pada Dua Ekosistem yang Berbeda,” vol. 1, no. 2, pp. 49–58, 2015.

R. Susanto et al., “Potensi Pembuatan Replika Tulang Berpori Menggunakan Template Ampas Tebu,” Chempublish J., vol. 5, no. 2, pp. 116–129, 2020, [Online]. Available: https://doi.org/10.22437/chp.v5i2.10612.

H. S. Nadiah, “Pengujian Kekerasan Hidroksiapatit pada Komposisi Bahan Gigi Tiruan dengan Campuran Hidroksiakpatit Cangkang Kerang Pensi (Corbicula Moltkiana) Berbasis Biokeramik,” 2021.

J. B. Li, X. Y. Liu, W. F. Li, and J. H. Zhu, “Preparation and characterization of bioactive poly (lactic acid)/SiO2-CaO composite membranes,” Wuji Cailiao Xuebao/Journal Inorg. Mater., vol. 26, no. 9, pp. 998–1002, 2011, doi: 10.3724/SP.J.1077.2011.11125.

Djohar Maknun et al., Sukses Mendidik Anak di Abad 21. Yogyakarta: Samudra Biru, 2018.

M. Ramezani, P. Tremain, E. Doroodchi, and B. Moghtaderi, “Determination of Carbonation/Calcination Reaction Kinetics of a Limestone Sorbent in low CO2 Partial Pressures Using TGA Experiments,” Energy Procedia, vol. 114, no. November 2016, pp. 259–270, 2017, doi: 10.1016/j.egypro.2017.03.1168.

J. C. Maya, F. Chejne, C. A. Gómez, and S. K. Bhatia, “Effect of the CaO sintering on the calcination rate of CaCO3 under atmospheres containing CO2,” AIChE J., vol. 64, no. 10, pp. 3638–3648, 2018, doi: 10.1002/aic.16326.

G. Bertuccio, D. Puglisi, D. Macera, R. Di Liberto, M. Lamborizio, and L. Mantovani, “Silicon carbide detectors for in vivo dosimetry,” IEEE Trans. Nucl. Sci., vol. 61, no. 2, pp. 961–966, 2014, doi: 10.1109/TNS.2014.2307957.

P. Li, W. Dang, T. Qin, Z. Zhang, and C. Lv, “A competing risk model of reliability analysis for NAND-Based SSDs in space application,” IEEE Access, vol. 7, pp. 23430–23441, 2019, doi: 10.1109/ACCESS.2019.2899624.

J. Syarif, “Biomaterial Berbasis Logam,” 2009. http://www.infometrik.com/2009/08/ (accessed Jan. 10, 2022).

D. Nath, F. Singh, and R. Das, “X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study,” Mater. Chem. Phys., vol. 239, no. April 2019, p. 122021, 2020, doi: 10.1016/j.matchemphys.2019.122021.




DOI: http://dx.doi.org/10.24036/13872171074