Analysis of Microwave Absorption Properties of Graphene Oxide from Rice Husk Waste

Andari Oktafiani - Department of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Ramli Ramli - Nanoscience and Nantotechnology Research Group, Universitas Negeri Padang, Jl. Prof. Dr. Hmka Air Tawar Padang 25131
Yenni Darvina - Nanoscience and Nantotechnology Research Group, Universitas Negeri Padang, Jl. Prof. Dr. Hmka Air Tawar Padang 25131
Gusnedi Gusnedi - Nanoscience and Nantotechnology Research Group, Universitas Negeri Padang, Jl. Prof. Dr. Hmka Air Tawar Padang 25131

Abstract


Graphene Oxide (GO) was synthesized with variations in carbonization temperatures of 250 °C, 300 °C, and 350 °C using the modified Hummers method. The results of the synthesis of  GO will then be tested for microwave absorbing properties because it can be applied in various fields, such as information technology, medical equipment, industry, polymer synthesis, and organic synthesis. Therefore, in this report, GO uses rice husk waste instead of graphite as a carbon source because rice husk waste is abundant in nature and easy to obtain than graphite. In addition to reducing waste in Indonesia, this study aimed to determine the crystal size and GO functional groups and analyze the properties of microwave absorbers. X-ray diffraction (XRD) was used to determine the crystal size. The GO functional groups were determined using Fourier Transform Infrared (FTIR), and the microwave absorption characteristics of GO were analyzed using a Vector Network Analyzer (VNA). The XRD results show GO peaks between 26° peaks and 44° peaks. In the FTIR results, there are a collection of GO practices, in particular CO, C = C, and C = O. In the VNA results, the best microwave absorption properties are at an ignition temperature of 350 °C with the lowest reflection value - 39.95 dB, the highest absorption coefficient is 99%, and the absorption bandwidth is 0.06 GHz at a frequency of 8.5 GHz

Full Text:

PDF

References


P. Utomo and I. Yunita, “Sintesis Zeolit dari Abu Sekam Padi Pada Temperatur Kamar,” pp. 1–39, 2014.

S. Herodian, “Peluang dan tantangan industri berbasis hasil samping pengolahan padi,” Pangan, no. 48, pp. 38–49, 2007.

G. Supriyanto et al., “Graphene oxide from Indonesian biomass: Synthesis and characterization,” BioResources, vol. 13, no. 3, pp. 4832–4840, 2018, doi: 10.15376/biores.13.3.4832-4840.

P. Ranjan, S. Agrawal, A. Sinha, T. R. Rao, J. Balakrishnan, and A. D. Thakur, “A Low-Cost Non-explosive Synthesis of Graphene Oxide for Scalable Applications,” Sci. Rep., vol. 8, no. 1, pp. 1–13, 2018, doi: 10.1038/s41598-018-30613-4.

L. Stobinski et al., “Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods,” J. Electron Spectros. Relat. Phenomena, vol. 195, no. March 2018, pp. 145–154, 2014, doi: 10.1016/j.elspec.2014.07.003.

N. I. Zaaba, K. L. Foo, U. Hashim, S. J. Tan, W. W. Liu, and C. H. Voon, “Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence,” Procedia Eng., vol. 184, pp. 469–477, 2017, doi: 10.1016/j.proeng.2017.04.118.

S. N. Alam, N. Sharma, and L. Kumar, “Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO)*,” Graphene, vol. 06, no. 01, pp. 1–18, 2017, doi: 10.4236/graphene.2017.61001.

Y. Zhu et al., “Graphene and graphene oxide: Synthesis, properties, and applications,” Adv. Mater., vol. 22, no. 35, pp. 3906–3924, 2010, doi: 10.1002/adma.201001068.

Y. Rafitasari, H. Suhendar, N. Imani, F. Luciana, H. Radean, and I. Santoso, “Sintesis Graphene Oxide and Reduced Graphene Oxide,” 2016, doi: 10.21009/0305020218.

L. T. Sutayasa, “Karakterisasi Graphene Arang Ampas Tebu Berbasis X-Rd Dan Tem,” UNESA J. Chem., vol. 5, no. 3, pp. 23–27, 2016.

N. Syakir, R. Nurlina, S. Anam, A. Aprilia, and S. Hidayat, “Kajian Pembuatan Oksida Grafit untuk Produksi Oksida Grafena dalam Jumlah Besar,” J. Fis. Indones., vol. XIX, no. November, pp. 26–29, 2015.

I. Wandira, P. Karo Karo, and W. A. Adi, “Material Absorber Gelombang Elektromagnetik Berbasis (La0.8Ba0.2)(Mn(1-x)/2ZnxFe(1-x)/2)O3(x = 0 – 0,6),” J. Teor. dan Apl. Fis., vol. 06, no. 01, pp. 1–66, 2018.

N. Ardianti, Y. Darvina, F. U. Jhora, and R. Ramli, “Microwave Absorption Properties of Graphene Oxide Derived from Coconut Shell Waste by Modified Hummer ’ s Method,” vol. 15, no. 2, pp. 88–95, 2022.

M. Ikhsan and R. Ramli, “Measurements and analysis of crystal structures of activated carbon of empty fruit bunch from oil palm biomass waste,” J. Phys. Conf. Ser., vol. 1528, no. 1, pp. 0–4, 2020, doi: 10.1088/1742-6596/1528/1/012031.

M. Hapsari, A. H. Cahyana, S. H. Oktavia, and A. R. Liandi, “Synthesis of spirooxindole-pyrrolizidine compounds using fe3o4-go catalyst and their bioactivity assays,” Rasayan J. Chem., vol. 13, no. 4, pp. 2317–2324, 2020, doi: 10.31788/RJC.2020.1345583.

J. Guerrero-Contreras and F. Caballero-Briones, “Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method,” Mater. Chem. Phys., vol. 153, pp. 209–220, 2015, doi: 10.1016/j.matchemphys.2015.01.005.

O. Gustira, Y. Darvina, and Ramli, “Pengaruh Komposisi MnFe2O4 Terhadap Sifat Listrik Nanokomposit MnFe2O4 / PVDF yang Disintesis dengan Metode Spin Coating,” Pillar Phys., vol. 13, no. April, pp. 59–66, 2020.

M. I. Ramadhan, W. Widanarto, and S. Sunardi, “Pengaruh Temperatur Sintering Terhadap Struktur dan Sifat Magnetik Ni2+- Barium Ferit sebagai Penyerap Gelombang Mikro,” J. Teras Fis., vol. 1, no. 1, p. 23, 2018, doi: 10.20884/1.jtf.2018.1.1.567.




DOI: http://dx.doi.org/10.24036/12996171074